Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung | |||
electrical_engineering_1:task_pdkggtyexxy1ktu3_with_calculation [2023/04/02 00:27] – mexleadmin | electrical_engineering_1:task_pdkggtyexxy1ktu3_with_calculation [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1 | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | {{tag> | ||
- | {{include_n> | ||
- | |||
- | # | ||
- | |||
- | Calculate the **resistor values** which have to be used in the following circuits. | ||
- | |||
- | 1. A resistor $R_1$ shall have the same absolute value of the impedance as a capacitor $C_1=40 ~{\rm nF}$ at $f_1=4 ~{\rm MHz}$. | ||
- | |||
- | # | ||
- | |||
- | \begin{align*} | ||
- | R_1 &= |\underline{X}_{C1}| \\ | ||
- | &= {{1}\over{2\pi \cdot f \cdot C_1}} \\ | ||
- | &= {{1}\over{2\pi \cdot 4 ~{\rm MHz} \cdot 40 ~\rm nF}} \\ | ||
- | \end{align*} | ||
- | # | ||
- | |||
- | # | ||
- | \begin{align*} | ||
- | | ||
- | \end{align*} | ||
- | # | ||
- | |||
- | |||
- | 2. A $RL$ series circuit with $L_2=4.7 ~\rm µH$, where an AC voltage source of $U_2=1.0 ~\rm V$ with $f_2=450 ~\rm kHz$ generates a current $I_2=60 ~\rm mA$. | ||
- | |||
- | # | ||
- | A series circuit means that the current is constant on every component. \\ | ||
- | The equivalent impedance for $R$ and $L$ combined is given by | ||
- | \begin{align*} | ||
- | {{\underline{U}}\over{\underline{I}}} &= R_2 + \underline{X}_{L2} \\ | ||
- | &= R_2 + {\rm j} \cdot \omega L | ||
- | \end{align*} | ||
- | Since ${\rm j} \cdot \omega L $ is perpendicular to $R_2$ this can be simplified to: | ||
- | \begin{align*} | ||
- | \left| {{\underline{U}}\over{\underline{I}}} \right|^2 &= |R_2|^2 + |\underline{X}_{L2}|^2 \\ | ||
- | \left( {{U}\over{I}} \right)^2 &= {R_2}^2 + {X_{L2}}^2 \\ | ||
- | \end{align*} | ||
- | |||
- | This can be rearranged to get $R_2$: | ||
- | \begin{align*} | ||
- | R_2 &= \sqrt{ \left( {{U }\over{I | ||
- | &= \sqrt{ \left( {{1~{\rm V}}\over{60~\rm mA}} \right)^2 - (2\pi \cdot 450~{\rm kHz} \cdot 4.7 ~ {\rm µH})^2 } \\ | ||
- | \end{align*} | ||
- | |||
- | # | ||
- | |||
- | # | ||
- | |||
- | \begin{align*} | ||
- | | ||
- | \end{align*} | ||
- | |||
- | # | ||
- | |||
- | 3. A $RC$ parallel circuit with $C_3=4.7 ~\rm nF$ on an AC current source ($I_{3S}=1.3 ~\rm A$,$f_3=200 ~\rm kHz$), which generates a current of $I_{3R}=1.0 ~\rm A$ through $R_3$. | ||
- | |||
- | # | ||
- | |||
- | Parallel circuit means that the voltage is the same on $R_3$ and $C_3$: \\ | ||
- | \begin{align*} | ||
- | | ||
- | \end{align*} | ||
- | So it gets clear, that $\underline{I}_{3R}$ is perpendicular to $\underline{I}_{3C}$ (It has to, since $R_3$ is perpendicular to $-{\rm j}\cdot {X}_{3C}$, too). \\ | ||
- | Therefore, the resulting current of the parallel circuit is given as: | ||
- | \begin{align*} | ||
- | | ||
- | | ||
- | {I}_{3C} | ||
- | \end{align*} | ||
- | |||
- | Back to the first formula: | ||
- | \begin{align*} | ||
- | R_3 \cdot {I}_{3R} &= {X}_{3C} \cdot {I}_{3C} \\ | ||
- | R_3 & | ||
- | & | ||
- | \end{align*} | ||
- | |||
- | # | ||
- | |||
- | # | ||
- | |||
- | \begin{align*} | ||
- | | ||
- | \end{align*} | ||
- | |||
- | # | ||
- | |||
- | |||
- | # | ||
- | |||