Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
electrical_engineering_1:task_pdkggtyexxy1ktu3_with_calculation [2023/04/02 00:27] mexleadminelectrical_engineering_1:task_pdkggtyexxy1ktu3_with_calculation [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1
Zeile 1: Zeile 1:
-{{tag>complex_impedance exam_ee1_WS2022}} 
-{{include_n>7000}} 
- 
-#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~  Impedances at different Frequencies  \\ <fs medium>(written test, approx. 18 % of a 60-minute written test, WS2022)</fs> #@TaskText_HTML@#     
- 
-Calculate the **resistor values** which have to be used in the following circuits. 
- 
-1. A resistor $R_1$ shall have the same absolute value of the impedance as a capacitor $C_1=40 ~{\rm nF}$ at $f_1=4 ~{\rm MHz}$. 
- 
-#@PathBegin_HTML~1~@# 
- 
-\begin{align*} 
-R_1 &= |\underline{X}_{C1}| \\ 
-    &= {{1}\over{2\pi \cdot f \cdot C_1}} \\ 
-    &= {{1}\over{2\pi \cdot 4 ~{\rm MHz} \cdot 40 ~\rm nF}} \\     
-\end{align*} 
-#@PathEnd_HTML@# 
- 
-#@ResultBegin_HTML~1~@# 
-\begin{align*} 
- R_1  &= 1.00 ~\Omega \\ 
-\end{align*} 
-#@ResultEnd_HTML@# 
- 
- 
-2. A $RL$ series circuit with $L_2=4.7 ~\rm µH$, where an AC voltage source of $U_2=1.0 ~\rm V$ with $f_2=450 ~\rm kHz$ generates a current $I_2=60 ~\rm mA$. 
- 
-#@PathBegin_HTML~2~@# 
-A series circuit means that the current is constant on every component. \\ 
-The equivalent impedance for $R$ and $L$ combined is given by 
-\begin{align*} 
-{{\underline{U}}\over{\underline{I}}} &= R_2 + \underline{X}_{L2} \\ 
-                                      &= R_2 + {\rm j} \cdot \omega L  
-\end{align*} 
-Since ${\rm j} \cdot \omega L $ is perpendicular to $R_2$ this can be simplified to: 
-\begin{align*} 
-\left| {{\underline{U}}\over{\underline{I}}} \right|^2 &= |R_2|^2 + |\underline{X}_{L2}|^2 \\ 
-\left( {{U}\over{I}} \right)^2 &= {R_2}^2 + {X_{L2}}^2 \\ 
-\end{align*} 
- 
-This can be rearranged to get $R_2$: 
-\begin{align*} 
-R_2 &= \sqrt{ \left( {{U }\over{I   }} \right)^2 - X_{L2}^2 } \\ 
-    &= \sqrt{ \left( {{1~{\rm V}}\over{60~\rm mA}} \right)^2 - (2\pi \cdot 450~{\rm kHz} \cdot 4.7 ~ {\rm µH})^2 } \\ 
-\end{align*} 
- 
-#@PathEnd_HTML@# 
- 
-#@ResultBegin_HTML~2~@# 
- 
-\begin{align*} 
- R_2  &= 10.0 ~\Omega \\ 
-\end{align*} 
- 
-#@ResultEnd_HTML~2~@# 
- 
-3. A $RC$ parallel circuit with $C_3=4.7 ~\rm nF$ on an AC current source ($I_{3S}=1.3 ~\rm A$,$f_3=200 ~\rm kHz$), which generates a current of $I_{3R}=1.0 ~\rm A$ through $R_3$. 
- 
-#@PathBegin_HTML~3~@# 
- 
-Parallel circuit means that the voltage is the same on $R_3$ and $C_3$: \\ 
-\begin{align*} 
- \underline{U}_3 = R_3 \cdot \underline{I}_{3R} = -{\rm j}\cdot {X}_{3C} \cdot \underline{I}_{3C}  
-\end{align*} 
-So it gets clear, that $\underline{I}_{3R}$ is perpendicular to $\underline{I}_{3C}$ (It has to, since $R_3$ is perpendicular to  $-{\rm j}\cdot {X}_{3C}$, too). \\ 
-Therefore, the resulting current of the parallel circuit is given as: 
-\begin{align*} 
- \underline{I}_{3}     & \underline{I}_{3R}    +  \underline{I}_{3C} \\ 
- |\underline{I}_{3}|^2 &= |\underline{I}_{3R}|^2 + |\underline{I}_{3C}|^2 \\ 
-  {I}_{3C}    &= \sqrt{|{I}_{3}|^2 - |{I}_{3R}|^2} 
-\end{align*} 
- 
-Back to the first formula:  
-\begin{align*} 
-R_3 \cdot {I}_{3R} &= {X}_{3C} \cdot {I}_{3C} \\ 
-R_3  & {X}_{3C} \cdot {{{I}_{3C}}\over{{I}_{3R}}} \\ 
-     & {{1}\over{2\pi \cdot f \cdot C_3}} \cdot {{\sqrt{|{I}_{3}|^2 - |{I}_{3R}|^2}}\over{{I}_{3R}}} \\ 
-\end{align*} 
- 
-#@PathEnd_HTML~3~@# 
- 
-#@ResultBegin_HTML~3~@# 
- 
-\begin{align*} 
- R_3  &= 70.0 ~\Omega \\ 
-\end{align*} 
- 
-#@ResultEnd_HTML~3~@# 
- 
- 
-#@TaskEnd_HTML@# 
-