Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung | |||
electrical_engineering_1:task_l9hubowt6x00b2h5_with_calculation [2023/10/03 19:28] – mexleadmin | electrical_engineering_1:task_l9hubowt6x00b2h5_with_calculation [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1 | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | {{tag> | ||
- | {{include_n> | ||
- | |||
- | # | ||
- | |||
- | Two objects experience a charge increase per time. In the <imgref l9hubowt6x00b2h5_1> | ||
- | |||
- | < | ||
- | < | ||
- | </ | ||
- | {{drawio> | ||
- | </ | ||
- | |||
- | 1. Determine the currents $I_1$ and $I_2$ for the two objects from the $Q$-$t$-diagram <imgref l9hubowt6x00b2h5_1> | ||
- | |||
- | # | ||
- | * Have a look how much increase $\Delta Q$ per time duration $\Delta t$ is there for each object. | ||
- | * For this choose a distinct time period, e.g. between $0~\rm s$ and $20~\rm s$. | ||
- | * The current is then given as the change in charge per time: $I= {{\Delta Q}\over{\Delta t}}$ | ||
- | # | ||
- | |||
- | # | ||
- | {{drawio> | ||
- | # | ||
- | |||
- | 2. How can the current be determined, when the charge increase on an object changes non-linearly? | ||
- | |||
- | # | ||
- | A non-linear charge increase leads to a non-constant current. \\ | ||
- | For a non-constant current, one has to use the time derivative of the charge $Q$ to get the current $I$. \\ | ||
- | So, the formula $I= {{{\rm d} Q}\over{{\rm d} t}}$ has to be used instead of $I= {{\Delta Q}\over{\Delta t}}$. | ||
- | # | ||
- | |||
- | |||
- | |||
- | # | ||