Dies ist eine alte Version des Dokuments!


Exercise 1.1 : Complex Impedance Circuit
(written test, approx. 15% of a 60-minute written test, WS2022)

A circuit designed to filter the noise from a signal shall be analysed.
The input is given by a voltage source $u(t) = 3.0 V \cdot sin⁡(2\pi \cdot 15 kHz \cdot t)$ with an internal resistance of $10 \Omega$.
This linear source is connected with an inductor of $330 \mu H$ and a capacitor of $0.22 \mu F$, all in series.

1. Draw the circuit diagram of the given circuit.
Label all components, voltages and currents.

Result

electrical_engineering_1:kricv9fh7haauo6qcircuit.svg

2. Calculate the single impedance $|\underline{Z}_C|$, $|\underline{Z}_L|$ such as $|\underline{Z}|$ of the overall circuit.

Solution

\begin{align*} Z_C &= {{1}\over{2\pi \cdot f \cdot C}}\\ &= {{1}\over{2\pi \cdot 15 kHz \cdot 0.22 \mu F}}\\ \end{align*}
\begin{align*} Z_L &= 2\pi \cdot f \cdot L\\ &= 2\pi \cdot 15 kHz \cdot 0.22 \mu F\\ \end{align*}
\begin{align*} Z_C &= {{1}\over{2\pi \cdot f \cdot C}}\\ &= {{1}\over{2\pi \cdot 15 kHz \cdot 330 \mu H}}\\ \end{align*}
\begin{align*} \underline{Z} &= R + \underline{Z}_L + \underline{Z}_C \\ &= R + j \cdot {Z}_L - j \cdot {Z}_C \\ &= R + j \cdot ({Z}_L - {Z}_C) \\ |\underline{Z}| &= \sqrt{R^2 + (\underline{Z}_L - \underline{Z}_C)^2 }\\ \end{align*}

Final result

\begin{align*} Z_L &= 31.1 \Omega \\ Z_C &= 48.2 \Omega \\ Z &= 19.8 \Omega \end{align*}


3. Draw the three impedance phasors $|\underline{Z}_C|$, $|\underline{Z}_L|$ and $|\underline{Z}_R|$ in a diagram.
Choose and appropriate scaling factor and write it down.

Result

electrical_engineering_1:kricv9fh7haauo6qcircuit3.svg

4. Calculate the current $|\underline{I}|$.

Solution

\begin{align*} Z &= {{\hat{U}}\over{\hat{I}}} \\ \hat{I} &= {{\hat{U}}\over{Z}} \\ \end{align*}

With $I = {{1}\over{\sqrt{2}}}\cdot \hat{I}$: \begin{align*} I &= {{1}\over{\sqrt{2}}}\cdot {{\hat{U}}\over{Z}} \\ &= {{1}\over{\sqrt{2}}}\cdot {{3.0 V}\over{19.28 \Omega}} \\ \end{align*}

Final result

\begin{align*} I = 107 mA \end{align*}