Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
electrical_engineering_1:task_kricv9fh7haauo6q_with_calculation [2023/03/10 17:21] – mexleadmin | electrical_engineering_1:task_kricv9fh7haauo6q_with_calculation [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1 | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | {{tag> | ||
- | |||
- | <panel type=" | ||
- | <fs x-large> | ||
- | |||
- | A circuit designed to filter the noise from a signal shall be analysed. \\ | ||
- | The input is given by a voltage source $u(t) = 3.0 ~\rm{V} \cdot sin(2\pi \cdot 15 ~\rm{kHz} \cdot t)$ with an internal resistance of $10 ~\Omega$. \\ | ||
- | This linear source is connected with an inductor of $330 ~ \rm{µH}$ and a capacitor of $0.22 ~\rm{µF}$, all in series. | ||
- | |||
- | 1. Draw the circuit diagram of the given circuit. \\ Label all components, voltages and currents. | ||
- | |||
- | <button size=" | ||
- | <callout type=" | ||
- | |||
- | {{drawio> | ||
- | |||
- | </ | ||
- | |||
- | |||
- | 2. Calculate the single impedance $|\underline{Z}_C|$, | ||
- | |||
- | |||
- | <button size=" | ||
- | <callout type=" | ||
- | |||
- | \begin{align*} | ||
- | Z_C &= {{1}\over{2\pi \cdot f \cdot C}}\\ | ||
- | & | ||
- | \end{align*} | ||
- | \\ | ||
- | \begin{align*} | ||
- | Z_L &= 2\pi \cdot f \cdot L\\ | ||
- | & | ||
- | \end{align*} | ||
- | \\ | ||
- | \begin{align*} | ||
- | Z_C &= {{1}\over{2\pi \cdot f \cdot C}}\\ | ||
- | & | ||
- | \end{align*} | ||
- | \\ | ||
- | \begin{align*} | ||
- | | ||
- | &= R + j \cdot {Z}_L - j \cdot {Z}_C \\ | ||
- | &= R + j \cdot ({Z}_L - {Z}_C) \\ | ||
- | |\underline{Z}| &= \sqrt{R^2 + (\underline{Z}_L - \underline{Z}_C)^2 }\\ | ||
- | \end{align*} | ||
- | \\ | ||
- | |||
- | </ | ||
- | |||
- | <button size=" | ||
- | |||
- | \begin{align*} | ||
- | Z_L &= 31.1 ~\Omega \\ | ||
- | Z_C &= 48.2 ~\Omega \\ | ||
- | Z & | ||
- | \end{align*}</ | ||
- | \\ | ||
- | </ | ||
- | |||
- | 3. Draw the three impedance phasors $|\underline{Z}_C|$, | ||
- | |||
- | <button size=" | ||
- | <callout type=" | ||
- | |||
- | {{drawio> | ||
- | |||
- | </ | ||
- | |||
- | |||
- | 4. Calculate the current $|\underline{I}|$. | ||
- | |||
- | |||
- | |||
- | <button size=" | ||
- | <callout type=" | ||
- | |||
- | \begin{align*} | ||
- | Z & | ||
- | \hat{I} &= {{\hat{U}}\over{Z}} \\ | ||
- | \end{align*} | ||
- | |||
- | With $I = {{1}\over{\sqrt{2}}}\cdot \hat{I}$: | ||
- | \begin{align*} | ||
- | I &= {{1}\over{\sqrt{2}}}\cdot {{\hat{U}}\over{Z}} \\ | ||
- | & | ||
- | \end{align*} | ||
- | |||
- | </ | ||
- | |||
- | <button size=" | ||
- | |||
- | \begin{align*} | ||
- | I = 107 ~\rm{mA} | ||
- | \end{align*}</ | ||
- | \\ | ||
- | </ | ||
- | |||
- | |||
- | </ | ||