Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_1:task_kricv9fh7haauo6q_with_calculation [2023/02/12 05:28] – angelegt mexleadminelectrical_engineering_1:task_kricv9fh7haauo6q_with_calculation [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1
Zeile 1: Zeile 1:
-{{tag>complex_impedance exam_WS2022}} 
- 
-<panel type="info" > <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
-<fs x-large>**Exercise ~~#~~ : Complex Impedance Circuit  ** \\ (written test, approx. 15% of a 60-minute written test, WS2022) \\ \\ </fs> 
- 
-A circuit designed to filter the noise from a signal shall be analysed. \\  
-The input is given by a voltage source $u(t) = 3.0 V \cdot sin⁡(2\pi \cdot 15 kHz \cdot t)$ with an internal resistance of $10 \Omega$. \\ 
-This linear source is connected with an inductor of $330 \mu H$ and a capacitor of $0.22 \mu F$, all in series.  
- 
-1. Draw the circuit diagram of the given circuit. \\ Label all components, voltages and currents. 
- 
-<button size="xs" type="link" collapse="kricv9fh7haauo6q_1_Solution">{{icon>eye}} Result</button><collapse id="kricv9fh7haauo6q_1_Solution" collapsed="true"> 
-<panel> 
- 
-{{drawio>electrical_engineering_1:kricv9fh7haauo6qCircuit.svg}} 
- 
-</panel></collapse> 
- 
- 
-2. Calculate the single impedance $|\underline{Z}_C|$, $|\underline{Z}_L|$ such as $|\underline{Z}|$ of the overall circuit.  
- 
- 
-<button size="xs" type="link" collapse="kricv9fh7haauo6q_2_path">{{icon>eye}} Solution</button><collapse id="kricv9fh7haauo6q_2_path" collapsed="true"> 
-<panel> 
- 
-\begin{align*} 
-Z_C  &= {{1}\over{2\pi \cdot f \cdot C}}\\ 
-     &= {{1}\over{2\pi \cdot 15 kHz \cdot 0.22 \mu F}}\\ 
-\end{align*} 
-\\ 
-\begin{align*} 
-Z_L  &= 2\pi \cdot f \cdot L\\ 
-     &= 2\pi \cdot 15 kHz \cdot 0.22 \mu F\\ 
-\end{align*} 
-\\ 
-\begin{align*} 
-Z_C  &= {{1}\over{2\pi \cdot f \cdot C}}\\ 
-     &= {{1}\over{2\pi \cdot 15 kHz \cdot 330 \mu H}}\\ 
-\end{align*} 
-\\ 
-\begin{align*} 
- \underline{Z}  &= R + \underline{Z}_L + \underline{Z}_C \\  
-                &= R + j \cdot {Z}_L   - j \cdot {Z}_C \\  
-                &= R + j \cdot ({Z}_L - {Z}_C) \\  
-|\underline{Z}| &= \sqrt{R^2 + (\underline{Z}_L - \underline{Z}_C)^2 }\\ 
-\end{align*} 
-\\ 
- 
-</panel></collapse> 
- 
-<button size="xs" type="link" collapse="kricv9fh7haauo6q_2_solution">{{icon>eye}} Final result</button><collapse id="kricv9fh7haauo6q_2_solution" collapsed="true"><panel> 
-\begin{align*} 
-Z_L &= 31.1 \Omega \\ 
-Z_C &= 48.2 \Omega \\ 
-Z   &= 19.8 \Omega 
-\end{align*}</panel> 
- \\ 
-</collapse> 
- 
-3. Draw the three impedance phasors $|\underline{Z}_C|$, $|\underline{Z}_L|$ and $|\underline{Z}_R|$ in a diagram. \\ Choose and appropriate scaling factor and write it down. 
- 
-<button size="xs" type="link" collapse="kricv9fh7haauo6q_3_Solution">{{icon>eye}} Result</button><collapse id="kricv9fh7haauo6q_3_Solution" collapsed="true"> 
-<panel> 
- 
-{{drawio>electrical_engineering_1:kricv9fh7haauo6qCircuit3.svg}} 
- 
-</panel></collapse> 
- 
- 
-4. Calculate the current $|\underline{I}|$. 
- 
- 
- 
-<button size="xs" type="link" collapse="kricv9fh7haauo6q_4_path">{{icon>eye}} Solution</button><collapse id="kricv9fh7haauo6q_4_path" collapsed="true"> 
-<panel> 
- 
-\begin{align*} 
-Z       &= {{\hat{U}}\over{\hat{I}}} \\ 
-\hat{I} &= {{\hat{U}}\over{Z}} \\ 
-\end{align*} 
- 
-With $I = {{1}\over{\sqrt{2}}}\cdot \hat{I}$: 
-\begin{align*} 
-I  &= {{1}\over{\sqrt{2}}}\cdot {{\hat{U}}\over{Z}} \\ 
-   &= {{1}\over{\sqrt{2}}}\cdot {{3.0 V}\over{19.28 \Omega}} \\ 
-\end{align*} 
- 
-</panel></collapse> 
- 
-<button size="xs" type="link" collapse="kricv9fh7haauo6q_4_solution">{{icon>eye}} Final result</button><collapse id="kricv9fh7haauo6q_4_solution" collapsed="true"><panel> 
-\begin{align*} 
-I = 107 mA 
-\end{align*}</panel> 
- \\ 
-</collapse> 
- 
- 
-</WRAP></WRAP></panel>