Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung | |||
electrical_engineering_1:task_jti0uzudcmg4u22t_with_calculation [2023/04/02 00:27] – mexleadmin | electrical_engineering_1:task_jti0uzudcmg4u22t_with_calculation [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1 | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | {{tag> | ||
- | {{include_n> | ||
- | # | ||
- | |||
- | A circuit with an ideal voltage source ($U=50 ~\rm V$, $f=330 ~\rm Hz$) and two components ($R$ and $\underline{X}_1$) shall be given. \\ | ||
- | After analysis, the following formula for the impedance was extracted: | ||
- | \begin{align*} | ||
- | \underline{Z} = \left({{2}\over{3+4{\rm j}}}+5{\rm j} \right) \Omega | ||
- | \end{align*} | ||
- | |||
- | 1. Calculate the physical values of the two components. | ||
- | |||
- | # | ||
- | |||
- | \begin{align*} | ||
- | \underline{Z} &= \left({{2}\over{3+4{\rm j}}} + 5{\rm j} \right) ~\Omega \\ | ||
- | &= \left({{2}\over{3+4{\rm j}}} \cdot {{3-4{\rm j}}\over{3-4j}} + 5{\rm j} \right) ~\Omega \\ | ||
- | &= \left({{2}\over{9+16 | ||
- | &= \left(0.24 - 0.32{\rm j} + 5{\rm j} \right) ~\Omega \\ | ||
- | &= 0.24 ~\Omega + {\rm j} \cdot 4.68 ~\Omega \\ | ||
- | &= R + {\rm j} X_L \\ | ||
- | \end{align*} | ||
- | |||
- | With the complex part comes the physical value: | ||
- | \begin{align*} | ||
- | X_L &= \omega L \\ | ||
- | | ||
- | &= {{4.68 ~\Omega}\over{2\pi \cdot 300 ~\rm{Hz}}} \\ | ||
- | \end{align*} | ||
- | # | ||
- | |||
- | # | ||
- | |||
- | \begin{align*} | ||
- | | ||
- | | ||
- | \end{align*} | ||
- | # | ||
- | |||
- | 2. Calculate the phase and absolute value of complex current $\underline{I}$ through the circuit. | ||
- | |||
- | # | ||
- | |||
- | \begin{align*} | ||
- | \underline{I} &= {{\underline{U}}\over{\underline{Z}}} \\ | ||
- | &= {{50 ~\rm{V}}\over{ 0.24 ~\Omega + {\rm j} \cdot 4.68 ~\Omega }} \\ | ||
- | &= {{50 ~\rm{V}}\over{ 0.24 ~\Omega + {\rm j} \cdot 4.68 ~\Omega }} \cdot {{ 0.24 ~\Omega - {\rm j} \cdot 4.68 ~\Omega }\over{ 0.24 ~\Omega - {\rm j} \cdot 4.68 ~\Omega }} \\ | ||
- | &= {{50 ~\rm{V}}\over{(0.24 ~\Omega)^2 + (4.68 ~\Omega)^2 }} \cdot ( 0.24 ~\Omega - {\rm j} \cdot 4.68 ~\Omega ) \\ | ||
- | \end{align*} | ||
- | |||
- | The absolute value $|\underline{I}|$ can be calculated as: | ||
- | \begin{align*} | ||
- | |\underline{I}| &= {|{\underline{U}|}\over{|\underline{Z}|}} \\ | ||
- | &= {{50 ~\rm{V}}\over{| 0.24 ~\Omega + {\rm j} \cdot 4.68 ~\Omega |}} \\ | ||
- | &= {{50 ~\rm{V}}\over{\sqrt{ (0.24 ~\Omega)^2 + (4.68 ~\Omega)^2 }}} | ||
- | \end{align*} | ||
- | |||
- | The phase $\varphi_i$ can be calculated as | ||
- | \begin{align*} | ||
- | \varphi_i &= \arctan \left( {{\Im()}\over{\Re()}} \right) \\ | ||
- | &= \arctan \left( {{-4.68 ~\Omega}\over{0.24 ~\Omega}} \right) \\ | ||
- | \end{align*} | ||
- | |||
- | # | ||
- | |||
- | # | ||
- | |||
- | \begin{align*} | ||
- | |\underline{I}| &= 10.67 ~\rm{A} \\ | ||
- | \varphi_i | ||
- | \end{align*} | ||
- | |||
- | # | ||
- | |||
- | 3. Now an additional component $\underline{X}_2$ shall be added in series to the two components. \\ | ||
- | This component shall be dimensioned in such a way that the current and voltage are in phase. Calculate these component value! | ||
- | |||
- | # | ||
- | The current and voltage are in phase once there is only a pure ohmic (= pure real) resulting impedance $\underline{Z} + \underline{X}_2$. \\ | ||
- | Therefore, the component mus be a capacitor with the same absolute value of impedance: $|\underline{X}_C| = |\underline{X}_L| $ | ||
- | \begin{align*} | ||
- | X_C &= {{1}\over{\omega \cdot C}} = X_L \\ | ||
- | | ||
- | &= {{1}\over{2\pi \cdot 300 ~\rm{Hz} \cdot 4.68 ~\Omega}} \\ | ||
- | \end{align*} | ||
- | |||
- | # | ||
- | |||
- | # | ||
- | \begin{align*} | ||
- | | ||
- | \end{align*} | ||
- | \\ | ||
- | # | ||
- | |||
- | # |