Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_1:task_6tqttque1e2nf2c7_with_calculation [2023/02/12 06:24] mexleadminelectrical_engineering_1:task_6tqttque1e2nf2c7_with_calculation [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1
Zeile 1: Zeile 1:
-{{tag>dc_network_analysis pure_resistor_network_simplification delta_wye_transformation exam_ee1_WS2022}} 
- 
-<panel type="info" > <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
-<fs x-large>**Exercise ~~#@ee1_taskctr.#~~ : Equivalent Linear Source ** \\ (written test, approx. 14% of a 60-minute written test, WS2022) \\ \\ </fs> 
- 
-The circuit in the following has to be simplified. 
- 
-{{drawio>electrical_engineering_1:6tqttque1e2nf2c7Circuit.svg}} 
- 
-Calculated the internal resistance $R_i$ and the source voltage $U_s$ of an equivalent linear voltage source on the connectors $A$ and $B$. 
-\begin{align*} 
- R_1=5.0 \Omega, && U_2=6.0 V,      && R_3=10 \Omega, \\ 
- I_4=4.2 A,      && R_5=10 \Omega , && R_6=7.5 \Omega, \\ 
- R_7=15 \Omega   &&                 && 
-\end{align*} 
-Use equivalent sources in order to simplify the circuit! 
- 
-<button size="xs" type="link" collapse="6tqttque1e2nf2c7_1_path">{{icon>eye}} Solution</button><collapse id="6tqttque1e2nf2c7_1_path" collapsed="true"> 
-Best thing is to re-think the wiring like rubber bands and adjust them: 
-{{drawio>electrical_engineering_1:6tqttque1e2nf2c7CircuitSolution1.svg}} \\ 
-The linear voltage source of $U_2$ and $R_1$ can be transormed into a current source $I_2={{U_2}\over{R_1}}$ and $R_1$: 
-{{drawio>electrical_engineering_1:6tqttque1e2nf2c7CircuitSolution2.svg}} \\ 
-Now a lot of can be combined. The resistors $R_1$, $R_3$, $R_5$ are in parallel, like also $I_2$ and $I_4$: 
-\begin{align*} 
-R_{135} &= R_1||R_3||R_5\\ 
-I_{24} &= I_2 - I_4 = {{U_2}\over{R_1}} - I_4  
-\end{align*} 
-The resulting circuit can again be transformed: 
-{{drawio>electrical_engineering_1:6tqttque1e2nf2c7CircuitSolution3.svg}} \\ 
-Here, the $U_{24}$ is calculated by $I_{24}$ as the following: 
-\begin{align*} 
-U_{24} &= R_{135} \cdot I_{24} \\ 
-       &= ({{U_2}\over{R_1}} - I_4) \cdot R_1||R_3||R_5 
-\end{align*} 
- 
-On the right side of the last circuit there is a voltage divider given by $R_{135}$, $R_6$ and $R_7$. \\ 
-Therefore the voltage between $A$ and $B$ is given as: 
-\begin{align*} 
-U_{AB} &= U_{24} \cdot {{R_7}\over{R_6 + R_7 + R_1||R_3||R_5}} \\ 
-       &= ({{U_2}\over{R_1}} - I_4) \cdot {{R_7 \cdot R_1||R_3||R_5}\over{R_6 + R_7 + R_1||R_3||R_5}} \\ 
-\end{align*} 
- 
-For the internal resistance $R_i$ the ideal voltage source is substituted by its resistance ($=0\Omega$, so a short-circuit): 
-\begin{align*} 
-R_{AB} &= R_7 || ( R_6 + R_1||R_3||R_5) \\ 
-\end{align*} 
- 
-with $R_1||R_3||R_5 = 5 \Omega || 10 \Omega || 10 \Omega =  5 \Omega ||  5 \Omega = 2.5 \Omega$: 
- 
-\begin{align*} 
-U_{AB} &= ({{6.0 V}\over{5.0 \Omega}} - 4.2 \Omega) \cdot {{15 \Omega \cdot 2.5 \Omega}\over{7.5 \Omega + 15 \Omega + 2.5 \Omega}} \\ 
-R_{AB} &= 15 \Omega|| ( 7.5 \Omega + 2.5 \Omega) \\ 
-\end{align*} 
-</collapse> 
- 
-<button size="xs" type="link" collapse="6tqttque1e2nf2c7_1_solution">{{icon>eye}} Final result</button><collapse id="6tqttque1e2nf2c7_1_solution" collapsed="true"> 
-\begin{align*} 
-U_{AB} &= 4.5 V\\ 
-R_{AB} &= 6 \Omega \\ 
- 
-\end{align*} 
- \\ 
-</collapse> 
- 
- 
-</WRAP></WRAP></panel>