Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
electrical_engineering_1:preparation_properties_proportions [2024/10/10 14:55] – mexleadmin | electrical_engineering_1:preparation_properties_proportions [2024/10/10 15:17] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 734: | Zeile 734: | ||
$R(\vartheta) = R_0 + c\cdot (\vartheta - \vartheta_0)$ | $R(\vartheta) = R_0 + c\cdot (\vartheta - \vartheta_0)$ | ||
- | * The constant is replaced by $c = R_0 \cdot \alpha$ | + | * The constant is replaced by $c = R_0 \cdot \alpha$ |
- | * $\alpha$ here is the linear temperature coefficient with unit: $ [\alpha] = {{1}\over{[\vartheta]}} = {{1}\over{{\rm K}}} $ | + | * $\alpha$ here is the linear temperature coefficient with unit: $ [\alpha] = {{1}\over{[\vartheta]}} = {{1}\over{{\rm K}}} $ |
- | * Besides the linear term, it is also possible to increase the accuracy of the calculation of $R(\vartheta)$ with higher exponents of the temperature influence. This approach will be discussed in more detail in the mathematics section below. | + | * Besides the linear term, it is also possible to increase the accuracy of the calculation of $R(\vartheta)$ with higher exponents of the temperature influence. This approach will be discussed in more detail in the mathematics section below. |
- | * These temperature coefficients are described with Greek letters: $\alpha$, $\beta$, $\gamma$, ... | + | * These temperature coefficients are described with Greek letters: $\alpha$, $\beta$, $\gamma$, ... |
+ | * Sometimes in the datasheets the value $\alpha$ is named as TCR (" | ||
<WRAP group>< | <WRAP group>< | ||
Zeile 778: | Zeile 779: | ||
A series expansion can again be applied: $R(T) \sim {\rm e}^{{\rm A} + {{\rm B}\over{T}} + {{\rm C}\over{T^2}} + ...}$. | A series expansion can again be applied: $R(T) \sim {\rm e}^{{\rm A} + {{\rm B}\over{T}} + {{\rm C}\over{T^2}} + ...}$. | ||
- | However, often only $B$ is given. \\ By taking the ratio of any temperature $T$ and $T_{25}=298.15~{\rm K}$ ($\hat{=} 25~°{\rm C}$) we get: | + | However, often only $B$ is given, for example {{electrical_engineering_1: |
${{R(T)}\over{R_{25}}} = {{{\rm exp} \left({{\rm B}\over{T}}\right)} \over {{\rm exp} \left({{\rm B}\over{298.15 ~{\rm K}}}\right)}} $ with $R_{25}=R(T_{25})$ | ${{R(T)}\over{R_{25}}} = {{{\rm exp} \left({{\rm B}\over{T}}\right)} \over {{\rm exp} \left({{\rm B}\over{298.15 ~{\rm K}}}\right)}} $ with $R_{25}=R(T_{25})$ | ||