Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_1:preparation_properties_proportions [2023/03/19 18:01] mexleadminelectrical_engineering_1:preparation_properties_proportions [2024/10/10 15:17] (aktuell) mexleadmin
Zeile 1: Zeile 1:
-====== 1Preparation, Properties, and Proportions ======+#@DefLvlBegin_HTML~1,1.~@#  
 + 
 +====== 1 Preparation, Properties, and Proportions ======
  
 ===== 1.1 Physical Proportions ===== ===== 1.1 Physical Proportions =====
Zeile 53: Zeile 55:
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
-==== derived quantities, SI units, and prefixes ====+==== derived Quantities, SI Units, and Prefixes ====
  
   * Besides the basic quantities, there are also quantities derived from them, e.g. $1~{{{\rm m}}\over{{\rm s}}}$.   * Besides the basic quantities, there are also quantities derived from them, e.g. $1~{{{\rm m}}\over{{\rm s}}}$.
Zeile 98: Zeile 100:
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
-==== Physical equations  ====+==== Physical Equations  ====
  
   * Physical equations allow a connection of physical quantities.   * Physical equations allow a connection of physical quantities.
Zeile 108: Zeile 110:
 <callout color="gray"> <callout color="gray">
  
-=== Quantity equations ===+=== Quantity Equations ===
 The vast majority of physical equations result in a physical unit that does not equal $1$. The vast majority of physical equations result in a physical unit that does not equal $1$.
 \\ \\ \\ \\
  
-Example: Force $F = m \cdot a$ with $[{\rm F}] = 1~kg \cdot {{{\rm m}}\over{{\rm s}^2}}$+Example: Force $F = m \cdot a$ with $[{\rm F}] = 1~\rm kg \cdot {{{\rm m}}\over{{\rm s}^2}}$
 \\ \\ \\ \\
  
Zeile 122: Zeile 124:
 <WRAP> <WRAP>
 <callout color="gray"> <callout color="gray">
-=== normalized quantity equations ===+=== normalized Quantity Equations ===
  
 In normalized quantity equations, the measured value or calculated value of a quantity equation is divided by a reference value. In normalized quantity equations, the measured value or calculated value of a quantity equation is divided by a reference value.
 This results in a dimensionless quantity relative to the reference value. This results in a dimensionless quantity relative to the reference value.
  
-Example: Efficiency $\eta = {{P_{out}}\over{P_{in}}}$+Example: The efficiency $\eta = {{P_{\rm O}}\over{P_{\rm I}}}$ is given as quotient between the outgoing power $P_{\rm O}$ and the incoming power $P_{\rm I}$.
  
 As a reference the following values are often used: As a reference the following values are often used:
Zeile 157: Zeile 159:
 </callout> </callout>
  
-==== Letters for physical quantities ====+==== Letters for physical Quantities ====
    
 In physics and electrical engineering, the letters for physical quantities are often close to the English term. In physics and electrical engineering, the letters for physical quantities are often close to the English term.
Zeile 208: Zeile 210:
 ==== Exercises ==== ==== Exercises ====
  
-<panel type="info" title="Exercise 1.1.1 Conversions I - precalculated example for the conversion of units"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> +{{tagtopic>chapter1_1&nodate&nouser&noheader&nofooter&order=custom}}
-{{youtube>DLjHyd0pFos}} +
-</WRAP></WRAP></panel> +
- +
-<panel type="info" title="Exercise 1.1.2 Conversions II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> +
-Convert the following values step by step: +
-  * A vehicle speed of $80.00~{\rm km/h}$ in $m/s$ <button size="xs" type="link" collapse="Loesung_1_1_2_1_Endergebnis">{{icon>eye}} Final result</button><collapse id="Loesung_1_1_2_1_Endergebnis" collapsed="true"> $ 22.22~{\rm {m}\over{s}}$</collapse> +
-  * An energy of $60.0~{\rm J}$ in ${\rm kWh}$ ($1~{\rm J} = 1~{\rm Joule} = 1~{\rm Watt}\cdot {\rm second}$) <button size="xs" type="link" collapse="Loesung_1_1_2_2_Endergebnis">{{icon>eye}} Final result</button><collapse id="Loesung_1_1_2_2_Endergebnis" collapsed="true"> $ 1.67 \cdot 10^{-5}~{\rm kWh}$</collapse> +
-  * The number of electrolytically deposited single positively charged copper ions of $1.2~{\rm Coulombs}$ (a copper ion has the charge of about $1.6 \cdot 10^{-19}~{\rm C}$)<button size="xs" type="link" collapse="Loesung_1_1_2_3_Endergebnis">{{icon>eye}} Final result</button><collapse id="Loesung_1_1_2_3_Endergebnis" collapsed="true"> $7.5 \cdot 10^{18} ~{\rm ions}$</collapse> +
-  * Absorbed energy of a small IoT consumer, which consumes $1~{\rm µW}$ uniformly in $10 ~{\rm days}$ <button size="xs" type="link" collapse="Loesung_1_1_2_4_Endergebnis">{{icon>eye}} Final result</button><collapse id="Loesung_1_1_2_4_Endergebnis" collapsed="true"> $0.864~{\rm Ws} = 0.864~{\rm J}$</collapse> +
-</WRAP></WRAP></panel> +
- +
-<panel type="info" title="Exercise 1.1.3 Conversions III"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> +
-Convert the following values step by step: +
-How many minutes could an ideal battery with $10~{\rm kWh}$ operate a consumer with $3~{\rm W}$? +
-</WRAP></WRAP></panel> +
- +
-<panel type="info" title="Exercise 1.1.4 Conversions IV"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> +
-Convert the following values step by step: +
-How much energy does an average household consume per day when consuming an average power of $500~{\rm W}$? How many chocolate bars ($2'000~{\rm kJ}$ each) does this correspond to? +
-</WRAP></WRAP></panel>+
  
 ===== 1.2 Introduction to the Structure of Matter ===== ===== 1.2 Introduction to the Structure of Matter =====
Zeile 246: Zeile 228:
 </WRAP> </WRAP>
  
-  * Explanation of the charge on the basis of the atomic models according to Bohr and Sommerfeld (see <imgref BildNr0>)+  * Explanation of the charge based on the atomic models according to Bohr and Sommerfeld (see <imgref BildNr0>)
   * Atoms consist of   * Atoms consist of
     * Atomic nucleus (with protons and neutrons)     * Atomic nucleus (with protons and neutrons)
Zeile 266: Zeile 248:
    
  
-==== Conductivity ====+==== Conductivity of Matter ====
 <WRAP group><WRAP column third> <WRAP group><WRAP column third>
 <callout color="grey">  <callout color="grey"> 
Zeile 295: Zeile 277:
 In the insulator, charge carriers are firmly bound to the atomic shells. In the insulator, charge carriers are firmly bound to the atomic shells.
  
-\\ \\ \\ +\\ \\ 
  
 Examples: Examples:
Zeile 304: Zeile 286:
 ==== Exercises ==== ==== Exercises ====
  
-<panel type="info" title="Exercise 1.2.1 Charges I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> +{{tagtopic>chapter1_2&nodate&nouser&noheader&nofooter&order=custom}}
-How many electrons make up the charge of one coulomb? +
-</WRAP></WRAP></panel> +
- +
-<panel type="info" title="Exercise  1.2.2 Charges II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> +
-A balloon has a charge of $Q=7~{\rm nC}$ on its surface. How many additional electrons are on the balloon? +
-</WRAP></WRAP></panel>+
  
-===== 1.3 Effects of electric charges and current =====+===== 1.3 Effects of Electric Charges and Current =====
 <WRAP><callout> <WRAP><callout>
 === Learning Objectives === === Learning Objectives ===
Zeile 335: Zeile 311:
     * Charges are generated by the high-voltage source and transferred to the two test specimens     * Charges are generated by the high-voltage source and transferred to the two test specimens
   * Result   * Result
-    * samples with same charges $\rightarrow$ Repulsion+    * samples with same charges $\rightarrow$ repulsion
     * samples with charges of different sign $\rightarrow$ attraction     * samples with charges of different sign $\rightarrow$ attraction
   * Findings   * Findings
Zeile 350: Zeile 326:
  
 <WRAP> <WRAP>
-Experiment on Coulomb's law and some calculated exercises+Experiment with Coulomb's law and some calculated exercises
 {{youtube>4ubqby1Id4g}} {{youtube>4ubqby1Id4g}}
 </WRAP> </WRAP>
  
-  * Qualitative investigation by means of a second experiment+  * Qualitative investigation using a second experiment
     * two charges ($Q_1$ and $Q_2$) at distance $r$     * two charges ($Q_1$ and $Q_2$) at distance $r$
-    * additional measurement of the force $F_C$ (e.g. via spring balance)+    * additional measurement of the force $F_{\rm C}$ (e.g. via spring balance)
   * Experiment results:   * Experiment results:
-    * Force increases linearly with larger charge $Q_1$ or $Q_2$. \\ $ F_C \sim Q_1$ and $ F_C \sim Q_2$ +    * Force increases linearly with larger charge $Q_1$ or $Q_2$. \\ $ F_{\rm C} \sim Q_1$ and $ F_{\rm C} \sim Q_2$ 
-    * Force falls quadratic with greater distance $r$ \\ $ F_C \sim {1 \over {r^2}}$ +    * Force falls quadratic with greater distance $r$ \\ $ F_{\rm C} \sim {1 \over {r^2}}$ 
-    * with a proportionality factor $a$: \\ $ F_C = a \cdot {{Q_1 \cdot Q_2} \over {r^2}}$+    * with a proportionality factor $a$: \\ $ F_{\rm C} = a \cdot {{Q_1 \cdot Q_2} \over {r^2}}$
   * Proportionality factor $a$   * Proportionality factor $a$
-  * The proportionality factor $a$ is defined in such a way that simpler relations arise in electrodynamics.+  * The proportionality factor $a$ is defined to create simpler relations in electrodynamics.
     * $a$ thus becomes:     * $a$ thus becomes:
     * $a = {{1} \over {4\pi\cdot\varepsilon}}$     * $a = {{1} \over {4\pi\cdot\varepsilon}}$
Zeile 369: Zeile 345:
  
 <callout icon="fa fa-exclamation" color="red" title="Note!"> <callout icon="fa fa-exclamation" color="red" title="Note!">
-The Coulomb force (in a vacuum) can be calculated via. \\ $\boxed{ F_C = {{1} \over {4\pi\cdot\varepsilon_0}} \cdot {{Q_1 \cdot Q_2} \over {r^2}} }$ \\+The Coulomb force (in a vacuum) can be calculated via. \\ $\boxed{ F_{\rm C} = {{1} \over {4\pi\cdot\varepsilon_0}} \cdot {{Q_1 \cdot Q_2} \over {r^2}} }$ \\
 where $\varepsilon_0 = 8.85 \cdot 10^{-12} \cdot ~{{\rm C}^2 \over {{\rm m}^2\cdot {\rm N}}} = 8.85 \cdot 10^{-12} \cdot ~{{{\rm As}} \over {{\rm Vm}}}$ where $\varepsilon_0 = 8.85 \cdot 10^{-12} \cdot ~{{\rm C}^2 \over {{\rm m}^2\cdot {\rm N}}} = 8.85 \cdot 10^{-12} \cdot ~{{{\rm As}} \over {{\rm Vm}}}$
 </callout> </callout>
Zeile 411: Zeile 387:
     * the above-mentioned conductor with a cross-section $A$ perpendicular to the conductor     * the above-mentioned conductor with a cross-section $A$ perpendicular to the conductor
     * the quantity of charges $\Delta Q = n \cdot e$, which in a certain period of time $\Delta t$, pass through the area $A$     * the quantity of charges $\Delta Q = n \cdot e$, which in a certain period of time $\Delta t$, pass through the area $A$
-  * In the case of a uniform charge transport over a longer period of time, i.e. direct current (DC), the following applies:+  * In the case of a uniform charge transport over a longer period, i.e. direct current (DC), the following applies:
     * The amount of charges per time flowing through the surface is constant: \\ ${{\Delta Q} \over {\Delta t}} = {\rm const.} = I$     * The amount of charges per time flowing through the surface is constant: \\ ${{\Delta Q} \over {\Delta t}} = {\rm const.} = I$
     * $I$ denotes the strength of the direct current.     * $I$ denotes the strength of the direct current.
Zeile 419: Zeile 395:
 The current of $1~{\rm A}$ flows when an amount of charge of $1~{\rm C}$ is transported in $1~{\rm s}$ through the cross-section of the conductor. The current of $1~{\rm A}$ flows when an amount of charge of $1~{\rm C}$ is transported in $1~{\rm s}$ through the cross-section of the conductor.
  
-Before 2019: The current of $1~{\rm A}$ flows when two parallel conductors, each $1~{\rm m}$ long and $1~{\rm m}$ apart, exert a force of $F_C = 0.2\cdot 10^{-6}~{\rm N}$ on each other.+Before 2019: The current of $1~{\rm A}$ flows when two parallel conductors, each $1~{\rm m}$ long and $1~{\rm m}$ apart, exert a force of $F_{\rm L} = 0.2\cdot 10^{-6}~{\rm N}$ on each other.
 </callout> </callout>
  
Zeile 454: Zeile 430:
 <callout icon="fa fa-comment" color="blue" title="Definition of electrodes (according to DIN5489)"> <callout icon="fa fa-comment" color="blue" title="Definition of electrodes (according to DIN5489)">
 An electrode is a connection (or pin) of an electrical component. \\ An electrode is a connection (or pin) of an electrical component. \\
-As rule, the dimension of an electrode is characterized by the fact that a change of material takes place (e.g. metal->semiconductor, metal->liquid). \\+Looking at component, the electrode is characterized as the homogenous part of the componentwhere the charges come in / move out (usually made out of metal). \\
 The name of the electrode is given as follows:  The name of the electrode is given as follows: 
   * **A**node: Electrode at which the current enters the component.   * **A**node: Electrode at which the current enters the component.
   * Cathode: Electrode at which the current exits the component. (in German //**K**athode//)   * Cathode: Electrode at which the current exits the component. (in German //**K**athode//)
  
-As a mnemonic, you can remember the structure, shape, and electrodes of the diode (see <imgref BildNr8>).+As a mnemonic, you can remember the diode'structure, shape, and electrodes (see <imgref BildNr8>).
 </callout> </callout>
  
Zeile 471: Zeile 447:
 ==== Exercises ==== ==== Exercises ====
  
-<panel type="info" title="Exercise 1.4.1 Determining the current from the charge per time"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> +{{tagtopic>chapter1_4&nodate&nouser&noheader&nofooter&order=custom}}
- +
-<WRAP> +
-<imgcaption BildNr3 | Time course of the charge> +
-</imgcaption> +
-{{drawio>Zeitverlauf_Ladung.svg}} +
-</WRAP> +
- +
-Let the charge gain per time on an object be given. +
-  * Determine the current $I$ from the $Q$-$t$-diagram <imgref BildNr3> and plot them into the diagram. +
-  * How could you proceed if the amount of charge on the object changes non-linearly? +
- +
-</WRAP></WRAP></panel> +
- +
-<panel type="info" title="Exercise 1.4.2 Electron flow"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> +
- +
-How many electrons pass through a control cross-section of a metallic conductor, when the current of $40~{\rm mA}$ flows for $4.5~{\rm s}$? +
- +
-</WRAP></WRAP></panel>+
  
 ===== 1.5 Voltage, Potential, and Energy ===== ===== 1.5 Voltage, Potential, and Energy =====
Zeile 601: Zeile 559:
 ==== Exercises ==== ==== Exercises ====
  
-<panel type="info" title="Exercise 1.5.1 Direction of the voltage"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> +#@TaskTitle_HTML@#1.5.1 Direction of the voltage  
 +#@TaskText_HTML@#
  
 <WRAP> <WRAP>
Zeile 609: Zeile 568:
 </WRAP> </WRAP>
  
-Explain whether the voltages $U_{Batt}$, $U_{12}$ and $U_{21}$ in <imgref BildNr21> are positive or negative according to the voltage definition. +Explain whether the voltages $U_{\rm Batt}$, $U_{12}$ and $U_{21}$ in <imgref BildNr21> are positive or negative according to the voltage definition. 
-~~PAGEBREAK~~ ~~CLEARFIX~~ + 
-</WRAP></WRAP></panel>+#@HiddenBegin_HTML~1,Hints~@# 
 +  * Which terminal has the higher potential?  
 +  * From where to where does the arrow point?  
 +#@HiddenEnd_HTML~1,Hints~@# 
 + 
 + 
 +#@HiddenBegin_HTML~2,Result~@# 
 +  * ''+'' is the higher potential. Terminal 1 has the higher potential. $\varphi_1 \varphi_2$ 
 +  * For $U_{\rm Batt}$: The arrow starts at terminal 1 and ends at terminal 2. So $U_{\rm Batt}=U_{12}>0$ 
 +  * $U_{21}<0$ 
 +#@HiddenEnd_HTML~1l2,Result~@# 
 + 
 +#@TaskEnd_HTML@# 
  
  
Zeile 647: Zeile 619:
 In general, the cause-and-effect relationship is such that an applied voltage across the resistor produces the current flow. However, the reverse relationship also applies: as soon as an electric current flows across a resistor, a voltage drop is produced over the resistor. In general, the cause-and-effect relationship is such that an applied voltage across the resistor produces the current flow. However, the reverse relationship also applies: as soon as an electric current flows across a resistor, a voltage drop is produced over the resistor.
 In electrical engineering, circuit diagrams use idealized components in a {{wp>Lumped-element model}}. The resistance of the wires is either neglected - if it is very small compared to all other resistance values - or drawn as a separate "lumped" resistor. In electrical engineering, circuit diagrams use idealized components in a {{wp>Lumped-element model}}. The resistance of the wires is either neglected - if it is very small compared to all other resistance values - or drawn as a separate "lumped" resistor.
 +
 +The values of the resistors are standardized in such a way, that there is a fixed number of different values between $1~\Omega$ and $10~\Omega$ or between $10~\rm k\Omega$ and $100~\rm k\Omega$. These ranges, which cover values up to the tenfold number, are called decades. In general, the resistors are ordered in the so-called {{wp>E series of preferred numbers}}, like 6 values in a decade, which is named E6 (here: $1.0~\rm k\Omega$, $1.5~\rm k\Omega$, $2.2~\rm k\Omega$, $3.3~\rm k\Omega$, $4.7~\rm k\Omega$, $6.8~\rm k\Omega$). As higher the number (e.g. E24) more different values are available in a decade, and as more precise the given value is.
 +
 +For larger resistors with wires, the value is coded by four to six colored bands (see [[https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-resistor-color-code|conversion tool]]). For smaller resistors without wires, often numbers are printed onto the components ([[https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-smd-resistor-code|conversion tool]])
 +
 +<imgcaption BildNr13 | examples for a real 15kOhm resistor>
 +</imgcaption>
 +{{drawio>examplesForResistors.svg}}
 +
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 652: Zeile 633:
 <WRAP group><WRAP half column> <WRAP group><WRAP half column>
 <callout color="grey"> <callout color="grey">
-===  Linear resistors ==+===  Linear Resistors ==
 <imgcaption BildNr13 | Linear resistors in the U-I diagram> <imgcaption BildNr13 | Linear resistors in the U-I diagram>
 </imgcaption> </imgcaption>
 {{drawio>linearer_Widerstand_UI.svg}} {{drawio>linearer_Widerstand_UI.svg}}
  
-  * For linear resistors, the resistance value is $R={{U_R}\over{I_R}}=const.$ and thus independent of $U_R$. +  * For linear resistors, the resistance value is $R={{U_R}\over{I_R}}={\rm const.$ and thus independent of $U_R$. 
-  * **Ohm's law** results: \\ $\boxed{R={{U_R}\over{I_R}}}$ with unit $[R]={{[U_R]}\over{[I_R]}}= 1{{V}\over{A}}= 1~\Omega$+  * **Ohm's law** results: \\ $\boxed{R={{U_R}\over{I_R}}}$ with unit $[R]={{[U_R]}\over{[I_R]}}= 1{\rm {V}\over{A}}= 1~\Omega$
   * In <imgref BildNr13> the value $R$ can be read from the course of the straight line $R={{{\Delta U_R}}\over{\Delta I_R}}$   * In <imgref BildNr13> the value $R$ can be read from the course of the straight line $R={{{\Delta U_R}}\over{\Delta I_R}}$
   * The reciprocal value (inverse) of the resistance is called the conductance: $G={{1}\over{R}}$ with unit $1~{\rm S}$ (${\rm Siemens}$). This value can be seen as a slope in the $U$-$I$ diagram.   * The reciprocal value (inverse) of the resistance is called the conductance: $G={{1}\over{R}}$ with unit $1~{\rm S}$ (${\rm Siemens}$). This value can be seen as a slope in the $U$-$I$ diagram.
Zeile 666: Zeile 647:
 </WRAP><WRAP half column> </WRAP><WRAP half column>
 <callout color="grey"> <callout color="grey">
-=== Non-linear resistors  ===+=== Non-linear Resistors  ===
 <imgcaption BildNr14 | Non-linear resistors in the U-I diagram> <imgcaption BildNr14 | Non-linear resistors in the U-I diagram>
 </imgcaption> </imgcaption>
Zeile 673: Zeile 654:
   * The point in the $U$-$I$ diagram in which a system rests is called the operating point. In the <imgref BildNr14> an operating point is marked with a circle in the left diagram.   * The point in the $U$-$I$ diagram in which a system rests is called the operating point. In the <imgref BildNr14> an operating point is marked with a circle in the left diagram.
   * For nonlinear resistors, the resistance value is $R={{U_R}\over{I_R(U_R)}}=f(U_R)$. This resistance value depends on the operating point.   * For nonlinear resistors, the resistance value is $R={{U_R}\over{I_R(U_R)}}=f(U_R)$. This resistance value depends on the operating point.
-  * Often small changes around the operating point are of interest (e.g. for small disturbances of load machines). For this purpose, the differential resistance $r$ (also dynamic resistance) is determined: \\ $\boxed{r={{dU_R}\over{dI_R}} \approx{{\Delta U_R}\over{\Delta I_R}} }$ with unit $[R]=1~\Omega$.+  * Often small changes around the operating point are of interest (e.g. for small disturbances of load machines). For this purpose, the differential resistance $r$ (also dynamic resistance) is determined: \\ $\boxed{r={{{\rm d}U_R}\over{{\rm d}I_R}} \approx{{\Delta U_R}\over{\Delta I_R}} }$ with unit $[R]=1~\Omega$.
   * As with the resistor $R$, the reciprocal of the differential resistance $r$ is the differential conductance $g$.   * As with the resistor $R$, the reciprocal of the differential resistance $r$ is the differential conductance $g$.
-  * In <imgref BildNr14> the differential conductance $g$ can be read from the slope of the straight line at each point $g={{dI_R}\over{dU_R}}$+  * In <imgref BildNr14> the differential conductance $g$ can be read from the slope of the straight line at each point $g={{{\rm d}I_R}\over{{\rm d}U_R}}$
 </callout> </callout>
  
 </WRAP></WRAP> </WRAP></WRAP>
  
-==== Resistance as a material Property ====+==== Resistance as a Material Property ====
  
 <WRAP> <WRAP>
-Clear explanation of resistivity+Good explanation of resistivity
 {{youtube>dRtNvUQC7c8}} {{youtube>dRtNvUQC7c8}}
 </WRAP> </WRAP>
Zeile 696: Zeile 677:
 <WRAP > <WRAP >
 <tabcaption tab04| Specific resistivity for different materials> <tabcaption tab04| Specific resistivity for different materials>
-^ Material           ^ $\rho$ in ${{\Omega\cdot {{\rm mm}^2}}\over{{\rm m}}}$ ^  +^ Material                          ^ $\rho$ in ${{\Omega\cdot {{\rm mm}^2}}\over{{\rm m}}}$  
-| Silver               |  $1.59\cdot 10^{-2}$  |  +| Silver                            |  $1.59\cdot 10^{-2}$                                    
-| Copper               |  $1.79\cdot 10^{-2}$  |  +| Copper                            |  $1.79\cdot 10^{-2}$                                    
-Aluminium            |  $2.78\cdot 10^{-2}$  |  +Gold                              |  $2.2\cdot 10^{-2}$                                     
-Gold                 |  $2.2\cdot 10^{-2}$   |  +Aluminium                         |  $2.78\cdot 10^{-2}$                                    
-| Lead                 |  $2.1\cdot 10^{-1}$   |  +| Lead                              |  $2.1\cdot 10^{-1}$                                     
-| Graphite             |  $8\cdot 10^{0}$      |  +| Graphite                          |  $8\cdot 10^{0}$                                        
-| Battery Acid (Lead-acid Battery) |  $1.5\cdot 10^4$      |  +| Battery Acid (Lead-acid Battery)  |  $1.5\cdot 10^4$                                        
-| Blood                |  $1.6\cdot 10^{6}$    |  +| Blood                             |  $1.6\cdot 10^{6}$                                      
-| (Tap) Water          |  $2 \cdot 10^{7}$     |  +| (Tap) Water                       |  $2 \cdot 10^{7}$                                       
-| Paper                |  $1\cdot 10^{15} ... 1\cdot 10^{17}$   +| Paper                             |  $1\cdot 10^{15} ... 1\cdot 10^{17}$                    |
  
 </tabcaption> </tabcaption>
Zeile 734: Zeile 715:
   * Chemical environment (chemoresistive effect e.g. chemical analysis of breathing air)    * Chemical environment (chemoresistive effect e.g. chemical analysis of breathing air) 
  
-In order to summarize these influences in a formula, the mathematical tool of {{wp>Taylor series}} is often used. +To summarize these influences in a formula, the mathematical tool of {{wp>Taylor series}} is often used. 
 This will be shown here practically for the thermoresistive effect.  This will be shown here practically for the thermoresistive effect. 
 The thermoresistive effect, or the temperature dependence of the resistivity, is one of the most common influences in components. The thermoresistive effect, or the temperature dependence of the resistivity, is one of the most common influences in components.
  
 The starting point for this is again an experiment. The ohmic resistance is to be determined as a function of temperature.  The starting point for this is again an experiment. The ohmic resistance is to be determined as a function of temperature. 
-For this purpose, the resistance is measured by means of a voltage source, a voltmeter (voltage measuring device), and an ammeter (current measuring device), and the temperature is changed (<imgref BildNr15>).+For this purpose, the resistance is measured using a voltage source, a voltmeter (voltage measuring device), and an ammeter (current measuring device), and the temperature is changed (<imgref BildNr15>).
  
 <WRAP group><WRAP column> <WRAP group><WRAP column>
Zeile 753: Zeile 734:
 $R(\vartheta) = R_0 + c\cdot (\vartheta - \vartheta_0)$ $R(\vartheta) = R_0 + c\cdot (\vartheta - \vartheta_0)$
  
-  *  The constant is replaced by $c = R_0 \cdot \alpha$ +  * The constant is replaced by $c = R_0 \cdot \alpha$ 
-  *  $\alpha$ here is the linear temperature coefficient with unit: $ [\alpha] = {{1}\over{[\vartheta]}} = {{1}\over{{\rm K}}} $ +  * $\alpha$ here is the linear temperature coefficient with unit: $ [\alpha] = {{1}\over{[\vartheta]}} = {{1}\over{{\rm K}}} $ 
-  *  Besides the linear term, it is also possible to increase the accuracy of the calculation of $R(\vartheta)$ with higher exponents of the temperature influence. This approach will be discussed in more detail in the mathematics section below. +  * Besides the linear term, it is also possible to increase the accuracy of the calculation of $R(\vartheta)$ with higher exponents of the temperature influence. This approach will be discussed in more detail in the mathematics section below. 
-  *  These temperature coefficients are described with Greek letters: $\alpha$, $\beta$, $\gamma$, ...+  * These temperature coefficients are described with Greek letters: $\alpha$, $\beta$, $\gamma$, ..
 +  * Sometimes in the datasheets the value $\alpha$ is named as TCR ("Temperature Coefficient of Resistance"), for example {{electrical_engineering_1:tmp64-q1.pdf|here}}.
  
 <WRAP group><WRAP column> <WRAP group><WRAP column>
Zeile 790: Zeile 772:
 <callout icon="fa fa-info" color="grey" title="Outlook"> <callout icon="fa fa-info" color="grey" title="Outlook">
  
-In addition to the specification of the parameters $\alpha$,$\beta$, ..., the specification of $R_{25}$ and $B_{25}$ can occasionally be found. +In addition to the specification of the parameters $\alpha$,$\beta$, ..., the specification of $R_{25}$ and $\rm B_{25}$ can occasionally be found. 
 This is a different variant of approximation, which refers to the temperature of $25~°{\rm C}$.  This is a different variant of approximation, which refers to the temperature of $25~°{\rm C}$. 
 It is based on the {{wp>Arrhenius equation}}, which links reaction kinetics to temperature in chemistry.  It is based on the {{wp>Arrhenius equation}}, which links reaction kinetics to temperature in chemistry. 
-For the temperature dependence of the resistance, the Arrhenius equation links the inhibition of carrier motion by lattice vibrations to the temperature $R(T) \sim e^{{B}\over{T}} $ .+For the temperature dependence of the resistance, the Arrhenius equation links the inhibition of carrier motion by lattice vibrations to the temperature $R(T) \sim {\rm e}^{{\rm B}\over{T}} $ .
  
-A series expansion can again be applied: $R(T) \sim e^{A + {{B}\over{T}} + {{C}\over{T^2}} + ...}$.+A series expansion can again be applied: $R(T) \sim {\rm e}^{{\rm A+ {{\rm B}\over{T}} + {{\rm C}\over{T^2}} + ...}$.
  
-However, often only $B$ is given. \\ By taking the ratio of any temperature $T$ and $T_{25}=298.15~{\rm K}$ ($\hat{=} 25~°{\rm C}$) we get: +However, often only $B$ is given, for example {{electrical_engineering_1:datasheet_ntcgs103jx103dt8.pdf|here}}. \\ By taking the ratio of any temperature $T$ and $T_{25}=298.15~{\rm K}$ ($\hat{=} 25~°{\rm C}$) we get: 
-${{R(T)}\over{R_{25}}} = {{exp \left({{B}\over{T}}\right)} \over {exp \left({{B}\over{298.15 ~{\rm K}}}\right)}} $ with $R_{25}=R(T_{25})$+${{R(T)}\over{R_{25}}} = {{{\rm exp\left({{\rm B}\over{T}}\right)} \over {{\rm exp\left({{\rm B}\over{298.15 ~{\rm K}}}\right)}} $ with $R_{25}=R(T_{25})$
  
 This allows the final formula to be determined: This allows the final formula to be determined:
-$R(T) = R_{25} \cdot exp \left( B_{25} \cdot \left({{1}\over{T}} - {{1}\over{298.15~{\rm K}}} \right) \right)  $+$R(T) = R_{25} \cdot {\rm exp\left( {\rm B}_{25} \cdot \left({{1}\over{T}} - {{1}\over{298.15~{\rm K}}} \right) \right)  $
  
 </callout> </callout>
Zeile 807: Zeile 789:
 === Types of temperature-dependent Resistors === === Types of temperature-dependent Resistors ===
  
-Besides the temperature dependence as a disturbing influence, there are also components that have been deliberately developed for a specific temperature influence.  +Besides the temperature dependence as a negative, disturbing influence, some components have been deliberately developed for a specific temperature influence.  
-These are called thermistors (a portmanteau of __therm__ally sensitive res__istor__). Thermistors are basically divided into hot conductors and cold conductors.+These are called thermistors (a portmanteau of __therm__ally sensitive res__istor__). Thermistors are divided into hot conductors and cold conductors.
  
 A special form of thermistors is materials that have been explicitly optimized for minimum temperature dependence (e.g. Constantan or Isaohm). A special form of thermistors is materials that have been explicitly optimized for minimum temperature dependence (e.g. Constantan or Isaohm).
Zeile 860: Zeile 842:
 <panel type="info" title="Exercise 1.6.2 Resistance of a pencil stroke"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 1.6.2 Resistance of a pencil stroke"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-Assume that a soft pencil lead is 100 % graphite. What is the resistance of a $5.0~{\rm cm}$ long and $0.20~{\rm mm}$ wide line if it has a height of $0.20~{\rm µm}$?+Assume that a soft pencil lead is $100 ~\%graphite. What is the resistance of a $5.0~{\rm cm}$ long and $0.20~{\rm mm}$ wide line if it has a height of $0.20~{\rm µm}$?
  
 The resistivity is given by <tabref tab04>. The resistivity is given by <tabref tab04>.
Zeile 875: Zeile 857:
 <panel type="info" title="Exercise 1.6.3 Resistance of a cylindrical coil"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 1.6.3 Resistance of a cylindrical coil"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-Let a cylindrical coil in the form of a multi-layer winding be given - this could for example occur in windings of a motor. The cylindrical coil has an inner diameter of $d_i=70~{\rm mm}$ and an outer diameter of $d_a = 120~{\rm mm}$. The number of turns is $n_W=1350$ turns, the wire diameter is $d=2.0~{\rm mm}$ and the specific conductivity of the wire is $\kappa_{Cu}=56 \cdot 10^6 ~{{{\rm S}}\over{{\rm m}}}$.+Let a cylindrical coil in the form of a multi-layer winding be given - this could for example occur in windings of a motor.  
 +The cylindrical coil has an inner diameter of $d_{\rm i}=70~{\rm mm}$ and an outer diameter of $d_{\rm a} = 120~{\rm mm}$.  
 +The number of turns is $n_{\rm W}=1350$ turns, the wire diameter is $d=2.0~{\rm mm}$ and the specific conductivity of the wire is $\kappa_{\rm Cu}=56 \cdot 10^6 ~{{{\rm S}}\over{{\rm m}}}$.
  
 First, calculate the wound wire length and then the ohmic resistance of the entire coil. First, calculate the wound wire length and then the ohmic resistance of the entire coil.
Zeile 883: Zeile 867:
  
 The power supply line to a consumer has to be replaced. Due to the application, the conductor resistance must remain the same. The power supply line to a consumer has to be replaced. Due to the application, the conductor resistance must remain the same.
-  * The old aluminium supply cable had a specific conductivity $\kappa_{Al}=33\cdot 10^6 ~{\rm {S}\over{m}}$ and a cross-section $A_{Al}=115~{\rm mm}^2$. +  * The old aluminium supply cable had a specific conductivity $\kappa_{\rm Al}=33\cdot 10^6 ~{\rm {S}\over{m}}$ and a cross-section $A_{\rm Al}=115~{\rm mm}^2$. 
-  * The new copper supply cable has a specific conductivity $\kappa_{Cu}=56\cdot 10^6 ~{\rm {S}\over{m}}$+  * The new copper supply cable has a specific conductivity $\kappa_{\rm Cu}=56\cdot 10^6 ~{\rm {S}\over{m}}$
  
-Which wire cross-section $A_{Cu}$ must be selected?+Which wire cross-section $A_{\rm Cu}$ must be selected?
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
Zeile 900: Zeile 884:
  
 <WRAP><callout> <WRAP><callout>
-=== Goal ===+=== Learning Objectives ===
 After this lesson you should be able to: After this lesson you should be able to:
   - Be able to calculate the electrical power and energy across a resistor.   - Be able to calculate the electrical power and energy across a resistor.
Zeile 989: Zeile 973:
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-<panel type="info" title="Exercise 1.7.2 Power"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> +#@TaskTitle_HTML@#1.7.2 Power 
 +#@TaskText_HTML@#
  
-An SMD resistor is used on a circuit board for current measurement. The resistance value should be $R=0.2~\Omega$, and the maximum power $P_M=250 ~\rm mW $.+An SMD resistor is used on a circuit board for current measurement. The resistance value should be $R=0.20~\Omega$, and the maximum power $P_M=250 ~\rm mW $.
 What is the maximum current that can be measured? What is the maximum current that can be measured?
  
-</WRAP></WRAP></panel>+#@HiddenBegin_HTML~pow1,Solution~@# 
 +The formulas $R = {{U} \over {I}}$ and $P = {U} \cdot {I}$ can be combined to get: 
 +\begin{align*} 
 +P = R \cdot I^2 
 +\end{align*} 
 + 
 +This can be rearranged into  
 + 
 +\begin{align*} 
 +I = + \sqrt{ {{P} \over{R} } }  
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~pow1,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~pow2,Result~@# 
 +\begin{align*} 
 +I = 1.118... ~{\rm A} \rightarrow I = 1.12 ~{\rm A}   
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~pow2,Result ~@# 
 + 
 + 
 +#@TaskEnd_HTML@# 
  
 <panel type="info" title="Exercise 1.7.3 Power loss and efficiency I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>  <panel type="info" title="Exercise 1.7.3 Power loss and efficiency I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
Zeile 1004: Zeile 1012:
 </WRAP> </WRAP>
  
-  * The battery monitor BQ769x0 measures the charge and discharge currents of a lithium-ion battery by means of the voltage across a measuring resistor (shunt). In <imgref BildNr29> the analog-to-digital converter ($\rm ADC$) of this chip is connected to the shunt $\rm R\_S$ via the circuit board. Through the shunt, the discharge current flows from the battery connection $\rm BAT+$ to $\rm OUT+$ and via $\rm OUT-$ back to $\rm BAT-$. The shunt shall be designed so that the bipolar measurement signals have a voltage level in the range of $-0.20 ~{\rm V}$ to $+0.20 ~{\rm V}$. The analog-to-digital converter has a resolution of $15 ~{\rm uV}$. The currents can be used to count the charge in the battery to determine the state of charge ($\rm SOC$).+  * The battery monitor BQ769x0 measures the charge and discharge currents of a lithium-ion battery using the voltage across a measuring resistor (shunt). In <imgref BildNr29> the analog-to-digital converter ($\rm ADC$) of this chip is connected to the shunt $\rm R\_S$ via the circuit board. Through the shunt, the discharge current flows from the battery connection $\rm BAT+$ to $\rm OUT+$ and via $\rm OUT-$ back to $\rm BAT-$. The shunt shall be designed so that the bipolar measurement signals have a voltage level in the range of $-0.20 ~{\rm V}$ to $+0.20 ~{\rm V}$. The analog-to-digital converter has a resolution of $15 ~{\rm uV}$. The currents can be used to count the charge in the battery to determine the state of charge ($\rm SOC$).
   * Draw an equivalent circuit with a voltage source (battery), measuring resistor and load resistor $R_L$. Also, draw the measurement voltage and load voltage.   * Draw an equivalent circuit with a voltage source (battery), measuring resistor and load resistor $R_L$. Also, draw the measurement voltage and load voltage.
   * The shunt should have a resistance value of $1~{\rm m}\Omega$. What maximum charge/discharge currents are still measurable? What minimum current change is measurable?   * The shunt should have a resistance value of $1~{\rm m}\Omega$. What maximum charge/discharge currents are still measurable? What minimum current change is measurable?
Zeile 1023: Zeile 1031:
 <panel type="info" title="Exercise 1.7.5 PPTC"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 1.7.5 PPTC"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-Often, parts of a circuit have to be protected from over-current, since otherwise components could break. +Often, parts of a circuit have to be protected from over-current, since otherwisecomponents could break. 
 This is usually done by a fuse or a circuit breaker, which opens up the connection and therefore disables the path for the current.  This is usually done by a fuse or a circuit breaker, which opens up the connection and therefore disables the path for the current. 
 A problem with the commonly used fuses is, that once the fuse is blown (=it has been tripped) it has to be changed. \\ A problem with the commonly used fuses is, that once the fuse is blown (=it has been tripped) it has to be changed. \\
Zeile 1040: Zeile 1048:
 In the given circuit below, a fuse $F$ shall protect another component shown as $R_\rm L$, which could be a motor or motor driver for example.  In the given circuit below, a fuse $F$ shall protect another component shown as $R_\rm L$, which could be a motor or motor driver for example. 
 In general, the fuse $F$ can be seen as a (temperature variable) resistance. In general, the fuse $F$ can be seen as a (temperature variable) resistance.
-The source voltage $U_S$ is $50~{\rm V}$ and $R_L=250~\Omega$. +The source voltage $U_\rm S$ is $50~{\rm V}$ and $R_{\rm L}=250~\Omega$. 
  
 {{drawio>PPTCfusecircuit.svg}} {{drawio>PPTCfusecircuit.svg}}
Zeile 1046: Zeile 1054:
 For this fuse, the component "[[https://www.mouser.de/datasheet/2/643/ds_CP_0zcg_series-1960332.pdf|0ZCG0020AF2C]]"((the datasheet is not needed for this exercise)) is used.  For this fuse, the component "[[https://www.mouser.de/datasheet/2/643/ds_CP_0zcg_series-1960332.pdf|0ZCG0020AF2C]]"((the datasheet is not needed for this exercise)) is used. 
 When this fuse trips, it has to carry nearly the full source voltage and dissipates a power of $0.8~{\rm W}$. When this fuse trips, it has to carry nearly the full source voltage and dissipates a power of $0.8~{\rm W}$.
-  * First assume that the fuse is not blown. The resistance of the fuse at this is $1~\Omega$, which is negligible compared to $R_L$. What is the value of the current flowing through $R_L$?+  * First assume that the fuse is not blown. The resistance of the fuse at this is $1~\Omega$, which is negligible compared to $R_{\rm L}$. What is the value of the current flowing through $R_{\rm L}$?
   * Assuming for the next questions that the fuse has to carry the full source voltage and the given power is dissipated.   * Assuming for the next questions that the fuse has to carry the full source voltage and the given power is dissipated.
     * Which value will the resistance of the fuse have?     * Which value will the resistance of the fuse have?
     * What is the current flowing through the fuse, when it is tripped?     * What is the current flowing through the fuse, when it is tripped?
-    * Compare this resistance of the fuse with $R_L$. Is the assumption, that all of the voltage drops on the fuse feasible?+    * Compare this resistance of the fuse with $R_{\rm L}$. Is the assumption, that all of the voltage drops on the fuse feasible?
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 1057: Zeile 1065:
 ===== Further Reading ===== ===== Further Reading =====
  
-  - [[http://omegataupodcast.net/303-das-si-system-der-einheiten/|Omega Tau Nr. 303]]: German Podcast with a researcher from the BTP ({{wpde>Physikalisch-Technische Bundesanstalt}}, Germanys' national standardization institute) on the evolution of the SI unit system.+  - [[http://omegataupodcast.net/303-das-si-system-der-einheiten/|Omega Tau Nr. 303]]: German Podcast with a researcher from the BTP ({{wpde>Physikalisch-Technische Bundesanstalt}}, Germany'national standardization institute) on the evolution of the SI unit system.
   - [[https://www.youtube.com/watch?v=KGJqykotjog&ab_channel=AtomsandSporks|How electric flow really works]]: No, there are no free electrons in the wire, and the electrons are not colliding with the atoms or atomic cores...   - [[https://www.youtube.com/watch?v=KGJqykotjog&ab_channel=AtomsandSporks|How electric flow really works]]: No, there are no free electrons in the wire, and the electrons are not colliding with the atoms or atomic cores...
  
 +#@DefLvlEnd_HTML~1,1.~@#