Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
electrical_engineering_1:network_analysis [2023/11/23 02:58] – [Bearbeiten - Panel] mexleadmin | electrical_engineering_1:network_analysis [2025/01/29 00:30] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 406: | Zeile 406: | ||
For conditioning, | For conditioning, | ||
- | The following simulation shows roughly the situation | + | The following simulation shows roughly the situation. Be aware that the resistor |
- | < | + | < |
Questions: | Questions: | ||
- | 1. Find the relationship between $R_1$, $R_2$, and $R_3$ using superposition. | + | 1. Find the relationship between $R_1$, $R_2$, and $R_3$ using superposition. |
+ | * Determine suitable values for $R_1$, $R_2$, and $R_3$. | ||
+ | * What values for $R^0_1$, $R^0_2$, and $R^0_3$ from the [[https:// | ||
# | # | ||
Zeile 456: | Zeile 458: | ||
\end{align*} | \end{align*} | ||
- | The formula $(1)$ is the general formula to calculate the output voltage $U_{\rm O}$ for a changing input voltage $U_{\rm I}$, where the supply voltage $U_{\rm S}" | + | The formula $(1)$ is the general formula to calculate the output voltage $U_{\rm O}$ for a changing input voltage $U_{\rm I}$, where the supply voltage $U_{\rm S}$ is constant. \\ |
</ | </ | ||
Zeile 525: | Zeile 527: | ||
\end{align*} | \end{align*} | ||
- | We can choose $R_3$ arbitrarily. Here I choose a nice value to get integer values for $R_2$ and $R_3$: | + | We can choose $R_3$ arbitrarily. Here I choose a nice value to get integer values for $R_3$ and $R_1$: |
\begin{align*} | \begin{align*} | ||
R_3 &= 45 {~\rm k\Omega}\\ | R_3 &= 45 {~\rm k\Omega}\\ | ||
Zeile 531: | Zeile 533: | ||
R_2 &= {{1}\over{5.09}}(R_3 + 15 {~\rm k\Omega}) = 11.8 {~\rm k\Omega} | R_2 &= {{1}\over{5.09}}(R_3 + 15 {~\rm k\Omega}) = 11.8 {~\rm k\Omega} | ||
\end{align*} | \end{align*} | ||
+ | |||
+ | Based on the E24 series, the following values are next to the calculated ones: | ||
+ | \begin{align*} | ||
+ | R_3^0 &= 43 {~\rm k\Omega}\\ | ||
+ | R_1^0 &= {{1}\over{3}} | ||
+ | R_2^0 &= {{1}\over{5.09}}(R_3 + 15 {~\rm k\Omega}) = 12 {~\rm k\Omega} | ||
+ | \end{align*} | ||
+ | |||
# | # | ||
+ | 2. Find the relationship between $R_1$, $R_2$, and $R_3$ by investigating Kirchhoff' | ||
+ | |||
+ | # | ||
+ | |||
+ | The potential of the node is $U_\rm O$. Therefore the currents are: | ||
+ | - the current $I_2$ over $R_2$ is flowing to ground: $I_2 = - {{U_\rm O}\over{R_2}} $ | ||
+ | - the current $I_1$ over $R_1$ is coming from the supply voltage $U_{\rm S}$ to the nodal voltage $U_{\rm O}$: $I_1 = {{U_{\rm S} - U_{\rm O}}\over{R_1}}$ | ||
+ | - the current $I_4$ over $R_4$ is coming from the input voltage | ||
+ | |||
+ | This led to the formula based on the Kirchhoff' | ||
+ | |||
+ | \begin{align*} | ||
+ | \Sigma I = 0 &= I_1 + I_2 + I_3 \\ | ||
+ | 0 &= {{U_{\rm S} - U_{\rm O}}\over{R_1}} + {{U_{\rm I} - U_{\rm O}}\over{R_4}} - {{U_\rm O}\over{R_2}} | ||
+ | \end{align*} | ||
+ | |||
+ | The formula can be rearranged, with all terms containing $ U_{\rm O}$ on the left side: | ||
+ | \begin{align*} | ||
+ | {{U_{\rm O}}\over{R_1}} + {{U_{\rm O}}\over{R_2}} + {{U_{\rm O}}\over{R_4}} | ||
+ | U_{\rm O}\cdot \left( {{1}\over{R_1}} + {{1}\over{R_2}} + {{1}\over{R_4}} \right) & | ||
+ | \end{align*} | ||
+ | |||
+ | Both sides can be multiplied by $\cdot R_1$, $\cdot R_2$, $\cdot R_4$ - in order to get rid of the fractions : | ||
+ | \begin{align*} | ||
+ | U_{\rm O}\cdot \left( {{R_1 R_2 R_4 }\over{R_1}} + {{R_1 R_2 R_4 }\over{R_2}} + {{R_1 R_2 R_4 }\over{R_4}} \right) & | ||
+ | U_{\rm O}\cdot \left( R_2 R_4 + R_1 R_4 + R_1 R_2 \right) & | ||
+ | U_{\rm O} &= {{R_2}\over{R_2 R_4 + R_1 R_4 + R_1 R_2 }} \left( R_4 \cdot U_{\rm S} + R_1 \cdot U_{\rm I} \right)\\ | ||
+ | \end{align*} | ||
+ | |||
+ | The last formula was just the result we also got by the superposition but by more thinking. \\ | ||
+ | So, sometimes there is an easier way... | ||
+ | * Unluckily, there is no simple way to know before, what way is the easiest. | ||
+ | * Luckily, all ways lead to the correct result. | ||
+ | |||
+ | # | ||
+ | |||
+ | 3. What is the input resistance $R_{\rm in}(R_1, R_2, R_3)$ of the circuit (viewed from the sensor)? | ||
+ | |||
+ | # | ||
+ | |||
+ | \begin{align*} | ||
+ | R_{\rm in}(R_1, R_2, R_3) &= R_3 + R_1 || R_2 \\ | ||
+ | &= R_3 + {{R_1 R_2}\over{R_1 + R_2}} | ||
+ | \end{align*} | ||
+ | |||
+ | # | ||
+ | |||
+ | 4. What is the minimum allowed input resistance ($R_{\rm in, min}(R_1, R_2, R_3)$) for the sensor to still deliver current? | ||
+ | |||
+ | # | ||
+ | |||
+ | \begin{align*} | ||
+ | R_{\rm in, min} &= {{U_{\rm sense}}\over{I_{\rm sense, max}}} \\ | ||
+ | &= \rm {{15 V}\over{1 mA}} \\ | ||
+ | &= 15 k\Omega \\ | ||
+ | \end{align*} | ||
+ | |||
+ | # | ||
- | * Find the relationship between $R_1$, $R_2$, and $R_3$ using the star-delta transformation. | ||
- | * What is the input resistance $R_{\rm in}(R_1, R_2, R_3)$ of the circuit (viewed from the sensor)? | ||
- | * What is the maximum allowed input resistance ($R_{\rm in}(R_1, R_2, R_3)$) for the sensor to still deliver current? | ||
- | * Determine suitable values for $R_1$, $R_2$, and $R_3$. | ||
- | * What values for $R^0_1$, $R^0_2$, and $R^0_3$ from the [[https:// | ||
- | * | ||
# | # | ||