Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
electrical_engineering_1:introduction_in_alternating_current_technology [2023/12/16 00:36] – [Bearbeiten - Panel] mexleadmin | electrical_engineering_1:introduction_in_alternating_current_technology [2024/12/04 14:43] (aktuell) – [Bearbeiten - Panel] mexleadmin | ||
---|---|---|---|
Zeile 476: | Zeile 476: | ||
Up to now, we used the following formula to represent alternating voltages: | Up to now, we used the following formula to represent alternating voltages: | ||
- | $$u(t)= \sqrt{2} | + | $$u(t)= \sqrt{2} U \cdot \sin (\varphi)$$ |
This is now interpreted as the instantaneous value of a complex vector $\underline{u}(t)$, | This is now interpreted as the instantaneous value of a complex vector $\underline{u}(t)$, | ||
Zeile 505: | Zeile 505: | ||
Therefore, the known properties of complex numbers from Mathematics 101 can be applied: | Therefore, the known properties of complex numbers from Mathematics 101 can be applied: | ||
* A multiplication with $j$ equals a phase shift of $+90°$ | * A multiplication with $j$ equals a phase shift of $+90°$ | ||
- | * A multiplication with $-j$ equals a phase shift of $-90°$ | + | * A multiplication with ${{1}\over{j}}$ equals a phase shift of $-90°$ |
===== 6.5 Complex Impedance ===== | ===== 6.5 Complex Impedance ===== | ||
Zeile 542: | Zeile 542: | ||
* $X = Z \sin \varphi$ | * $X = Z \sin \varphi$ | ||
- | value - and therefore a phasor - can simply | + | y ==== 6.5.2 Application on pure Loads ==== |
With the complex impedance in mind, the <tabref tab01> can be expanded to: | With the complex impedance in mind, the <tabref tab01> can be expanded to: | ||
Zeile 556: | Zeile 556: | ||
\\ \\ | \\ \\ | ||
The relationship between ${\rm j}$ and integral calculus should be clear: | The relationship between ${\rm j}$ and integral calculus should be clear: | ||
- | - The derivative of a sinusoidal value - and therefore a phasor - can simply be written as " | + | - The derivative of a sinusoidal value - and therefore a phasor - can simply be written as " |
- | - The integral of a sinusoidal value - and therefore a phasor - can simply be written as " | + | - The integral of a sinusoidal value - and therefore a phasor - can simply be written as " |
\begin{align*} | \begin{align*} | ||
\int {\rm e}^{{\rm j}(\omega t + \varphi_x)} | \int {\rm e}^{{\rm j}(\omega t + \varphi_x)} | ||
- | = {{1}\over{\rm j}} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)} | + | = {{1}\over{\rm j\omega}} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)} |
- | = | + | = -{{\rm j}\over{\omega}} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)} |
\end{align*} | \end{align*} | ||
</ | </ | ||
Zeile 614: | Zeile 614: | ||
<panel type=" | <panel type=" | ||
- | A coil has a reactance | + | A coil has a impedance |
- $85 ~\Omega$ | - $85 ~\Omega$ | ||
- $120 ~\Omega$ | - $120 ~\Omega$ | ||
Zeile 650: | Zeile 650: | ||
<panel type=" | <panel type=" | ||
- | A capacitor with $5 ~{\rm µF}$ is connected to a voltage source which generates $U_\sim = 200 ~{\rm V}$. At which frequencies the following | + | A capacitor with $5 ~{\rm µF}$ is connected to a voltage source which generates $U_\sim = 200 ~{\rm V}$. At which frequencies the following |
- $0.5 ~\rm A$ | - $0.5 ~\rm A$ | ||
- $0.8 ~\rm A$ | - $0.8 ~\rm A$ | ||
Zeile 824: | Zeile 824: | ||
<panel type=" | <panel type=" | ||
- | The following two currents with similar frequencies, | + | The following two currents with similar frequencies, |
* $i_1(t) = \sqrt{2} \cdot 2 ~A \cdot \cos (\omega t + 20°)$ | * $i_1(t) = \sqrt{2} \cdot 2 ~A \cdot \cos (\omega t + 20°)$ | ||
* $i_2(t) = \sqrt{2} \cdot 5 ~A \cdot \cos (\omega t + 110°)$ | * $i_2(t) = \sqrt{2} \cdot 5 ~A \cdot \cos (\omega t + 110°)$ |