DW EditSeite anzeigenÄltere VersionenLinks hierherAlles aus-/einklappenNach oben Diese Seite ist nicht editierbar. Sie können den Quelltext sehen, jedoch nicht verändern. Kontaktieren Sie den Administrator, wenn Sie glauben, dass hier ein Fehler vorliegt. ====== 7 Networks at variable frequency ====== Further content can be found at this [[https://www.electronics-tutorials.ws/accircuits/series-circuit.html|Tutorial]] or that [[https://www.khanacademy.org/science/electrical-engineering/ee-circuit-analysis-topic/ee-natural-and-forced-response/a/ee-rlc-natural-response-intuition|Tutorial]] ==== Introduction ==== In the previous chapters, it was explained what the "influence of a sinusoidal current flow" of capacitors and inductors looks like. To describe this, the impedance was introduced. This can be understood as a complex resistance for sinusoidal excitation. It applies to the capacitor: \begin{align*} \underline{U}_C = \frac{1}{{\rm j}\omega \cdot C} \cdot \underline{I}_C \quad \rightarrow \quad \underline{Z}_C = \frac{1}{{\rm j}\omega \cdot C} \end{align*} and for the inductance \begin{align*} \underline{U}_L = {\rm j}\omega \cdot L \cdot \underline{I}_L \quad \rightarrow \quad \underline{Z}_L = {\rm j}\omega \cdot L \end{align*} Complex impedances can be dealt with in much the same way as ohmic resistances in Electrical Engineering 1 (see: [[:electrical_engineering_1:simple_circuits|simple DC Circuits]], [[electrical_engineering_1:non-ideal_sources_and_two_terminal_networks|linear Sources and two-terminal network]], [[:electrical_engineering_1:network_analysis|Analysis of DC Networks]]). In these transformations, the fraction $ j\omega \cdot$ is preserved. Circuits with impedances such as inductors and capacitors will show a frequency dependence accordingly. <callout> === Targets === After this lesson, you should: - know that … - know that … is formed. - be able to … can … </callout> ===== 7.1 From Two-Terminal Network to Four-Terminal Network ===== <WRAP> <imgcaption imageNo01 | Two-Terminal Network to Four-Terminal Network> </imgcaption> \\ {{drawio>ZweipolundVierpol.svg}} \\ </WRAP> Until now, components such as resistors, capacitors, and inductors have been understood as two-terminal. This is also obvious since there are only two connections. In the following however circuits are considered, which behave similarly to a voltage divider: On one side a voltage $U_\rm I$ is applied, and on the other side $U_\rm O$ is formed with it. This results in 4 terminals. The circuit can and will be considered as a four-terminal network in the following. However, the input and output values will be complex. For a four-terminal network, the relation of "what goes out" (e.g. $\underline{U}_\rm O$ or $\underline{U}_2$) to "what goes in" (e.g. voltage $\underline{U}_\rm I$ or $\underline{U}_1$) is important. Thus, the output and input variables ($\underline{U}_\rm O$) and ($\underline{U}_\rm I$) give the quotient: \begin{align*} \underline{A} & = {{\underline{U}_{\rm O}^\phantom{O}}\over{\underline{U}_{\rm I}^\phantom{O}}} \\ & \text{with} \; \underline{U}_{\rm O} = U_{\rm O} \cdot {\rm e}^{{\rm j} \varphi_{u\rm O}} \\ & \text{and} \; \underline{U}_{\rm I} = U_{\rm I} \cdot {\rm e}^{{\rm j} \varphi_{u\rm I}} \\ \\ \underline{A} & = \frac {\underline{U}_{\rm O}^\phantom{O}}{\underline{U}_{\rm I}^\phantom{O}} = \frac {U_{\rm O} \cdot {\rm e}^{{\rm j} \varphi_{u\rm O}}}{U_{\rm I}\cdot {\rm e}^{{\rm j} \varphi_{u\rm I}}} \\ & = \frac {U_{\rm O}}{U_{\rm I}}\cdot {\rm e}^{{\rm j} (\varphi_{u\rm O}-\varphi_{u\rm I})} \\ \end{align*} \begin{align*} \boxed{\underline{A} = \frac {\underline{U}_{\rm O}^\phantom{O}}{\underline{U}_{\rm I}^\phantom{O}} = \frac {U_\rm O}{U_\rm I}\cdot {\rm e}^{{\rm j} \Delta\varphi_{u}}} \end{align*} <callout icon="fa fa-exclamation" color="red" title="Reminder:"> * The complex-valued quotient ${\underline{U}_{\rm O}}/{\underline{U}_{\rm I}}$ is called the **transfer function**. * The frequency-dependent magnitude of the quotient $A(\omega)={U_{\rm O}}/{U_{\rm I}}$ is called **amplitude response** and the angular difference $\Delta\varphi_{u}(\omega)$ is called **phase response**. </callout> The frequency behavior of the amplitude response and the frequency response is not only important in electrical engineering and electronics but will also play a central role in control engineering. ~~PAGEBREAK~~ ~~CLEARFIX~~ ===== 7.2 RL Series Circuit ===== <WRAP> <imgcaption imageNo02 | RL-series> </imgcaption> \\ {{drawio>RLReihenschaltung.svg}} \\ <WRAP> First, a series connection of a resistor $R$ and an inductor $L$ shall be considered (see <imgref imageNo02 >). This structure is also called RL-element. \\ Here, $\underline{U}_{\rm I}= \underline{X_\rm I} \cdot \underline{I}_{\rm I}$ with $\underline{X}_{\rm I} = R + {\rm j}\omega \cdot L$ and corresponding for $\underline{U}_{\rm O}$: \begin{align*} \underline{A} = \frac {\underline{U}_{\rm O}^\phantom{O}}{\underline{U}_{\rm I}^\phantom{O}} = \frac {\omega L}{\sqrt{R^2 + (\omega L)^2}}\cdot {\rm e}^{{\rm j}\left(\frac{\pi}{2} - \arctan \frac{\omega L}{R} \right)} \end{align*} This results in the following for * the amplitude response: $A = \frac {\omega L}{\sqrt{R^2 + (\omega L)^2}}$ and * the phase response: $\Delta\varphi_{u} = \arctan \frac{R}{\omega L} = \frac{\pi}{2} - \arctan \frac{\omega L}{R}$ The main focus should first be on the amplitude response. Its frequency response can be derived from the equation in various ways. - Extreme frequency consideration of this RL circuit (in the equation and the system) - Plotting amplitude and frequency response - Determination of prominent frequencies These three points are now to be gone through. ==== 7.2.1 RL High Pass ==== For the first step, we investigate the limit consideration: We look at what happens when the frequency $\omega$ runs to the definition range limits, i.e. $\omega \rightarrow 0$ and $\omega \rightarrow \infty$: * For $\omega \rightarrow 0$, $A = \frac {\omega L}{\sqrt{R^2 + (\omega L)^2}} \rightarrow 0$ as the numerator approaches zero and the denominator remains greater than zero. * For $\omega \rightarrow \infty$, $A \rightarrow 1$, because in the root in the denominator $(\omega L)^2$ becomes larger and larger in the ratio $R^2$ to . So the root tends to $\omega L$ and thus to the numerator. It can thus be seen that: * at small frequencies there is no voltage $U_2$ at the output. * at high frequencies $A = \frac {U_{\rm O}}{U_{\rm I}} = \rightarrow 1$, so the voltage at the output is equal to the voltage at the input. Result: \\ The RL element shown here therefore only allows large frequencies to pass (= pass through) and small ones are filtered out. \\ The circuit corresponds to a **high pass**. \\ \\ This can also be derived from understanding the components: * At small frequencies, the current in the coil and thus the magnetic field changes only slowly. So only a negligibly small reverse voltage is induced. The coil acts like a short circuit at low frequencies. * At higher frequencies, the current generated by $U_I$ through the coil changes faster, the induced voltage $U_{\rm i} = - {\rm d}I / {\rm d}t$ becomes large. \\ As a result, the coil inhibits the current flow and a voltage drops across the coil. * If the frequency becomes very high, only a negligible current flows through the coil - and hence through the resistor. The voltage drop at $R$ thus approaches zero and the output voltage $U_\rm O$ tends towards $U_\rm I$. The transfer function can also be decomposed into amplitude response and frequency response. \\ Often these plots are not given in with linear axis but: * the amplitude response with a double logarithmic coordinate system and * the phase response single logarithmic coordinate system. By this, the course from low to high frequencies is easier to see. The following simulation in <imgref imageNo5> shows the amplitude response and frequency response in the lower left corner. <WRAP centeralign> <imgcaption imageNo5 | RL high pass filter> </imgcaption>\\ {{url>https://www.falstad.com/afilter/circuitjs.html?cct=$+1+0.000005+5+50+5+50%0A%25+4+1630997.1347384118%0Ar+64+80+224+80+0+35%0AO+224+80+336+80+0%0Ag+224+208+224+240+0%0A170+64+80+32+80+3+20+1000+5+0.1%0Al+224+80+224+208+0+0.001+0%0Ao+3+16+0+34+5+0.00009765625+0+-1+in%0Ao+1+16+0+34+2.5+0.00009765625+1+-1+out%0A 500,500 noborder}} </WRAP> For further consideration, the equation of the transfer function $\underline{A} = \dfrac {\underline{U}_{\rm O}^\phantom{O}}{\underline{U}_{\rm I}^\phantom{O}}$ is to be rewritten so that it becomes independent of component values $R$ and $L$.\\ This allows for a generalized representation. This representation is called **normalization**: <WRAP centeralign> \begin{align*} \large{\underline{A} = \frac {\underline{U}_{\rm O}^\phantom{O}}{\underline{U}_{\rm I}^\phantom{O}} = \frac {\omega L} {\sqrt{R^2 + (\omega L)^2}}\cdot {\rm e}^{{\rm j}\left(\frac{\pi}{2} - \arctan \frac{\omega L}{R} \right)}} \quad \quad \vphantom{\HUGE{I \\ I}} \large{\xrightarrow{\text{normalization}}} \vphantom{\HUGE{I \\ I}} \quad \quad \quad \large{\underline{A}_{norm} = \frac {\omega L / R}{\sqrt{1 + (\omega L / R)^2}}\cdot {\rm e}^{{\rm j}\left(\frac{\pi}{2} - \arctan \frac{\omega L}{R} \right)} } \large{ = \frac {x} {\sqrt{1 + x^2 }}\cdot {\rm e}^{{\rm j}\left(\frac{\pi}{2} - \arctan x \right)} } \end{align*} </WRAP> This equation behaves quite the same as the one considered so far. ~~PAGEBREAK~~ ~~CLEARFIX~~ <imgref imageNo03 > shows the two plots. On the x-axis, $x = \omega L / R$ has been plotted as the normalization variable. This represents a weighted frequency. <WRAP> <imgcaption imageNo03 | Amplitude and phase response of the RL high-pass filter> </imgcaption> {{drawio>AmplitudenPhasengangRLHochpass.svg}} </WRAP> Here, too, the behavior determined in the limit value observation can be seen: * at small frequencies $\omega$ (corresponds to small $x$), the amplitude response tends toward zero. * At high frequencies, the ratio $U_{\rm O} / U_{\rm I} = 1 $ is established. Interesting in the phase response is the point $x = 1$. * Further to the left of this point (i.e. at smaller frequencies) a tenfold increase of the frequency $\omega$ produces a tenfold increase of $U_{\rm O} / U_{\rm I}$. * Further to the right of this point (i.e. at higher frequencies) $U_{\rm O} / U_{\rm I} = 1$ remains. So this point marks a limit. Far to the left, the ohmic resistance is significantly greater than the amount of impedance of the coil: $R \gg \omega L$. far to the right is just the opposite. The point $x=1$ just marks the cut-off frequency. \\ It holds <WRAP group> <WRAP quarter column > </WRAP> <WRAP quarter column > \begin{align*} \vphantom{\HUGE{I }} \\ \underline{A}_{\rm norm} = \frac{x}{\sqrt{1 + x^2}} \cdot {\rm e}^{{\rm j}\left(\frac{\pi}{2} - arctan x \right)} = \frac{U_{\rm O}}{U_{\rm I}} \cdot {\rm e}^{{\rm j}\varphi} \end{align*} </WRAP> <WRAP quarter column > \begin{align*} \left\{\begin{array}{l} x \ll 1 & \widehat{=}& \omega L \ll R \, : \quad & \frac{U_{\rm O}}{U_{\rm I}}=x &, \varphi = \frac{\pi}{2} \, \widehat{=} \, 90° \\ x \gg 1 & \widehat{=}& \omega L \gg R \, : \quad & \frac{U_{\rm O}}{U_{\rm I}}=1 &, \varphi = 0 \; \widehat{=} \, 0° \\ x = 1 & \widehat{=}& \omega L = R , : \quad & \frac{U_{\rm O}}{U_{\rm I}}=\frac{1}{\sqrt{2}} &, \varphi = \frac{\pi}{4} \, \widehat{=} \, 45° \end{array} \right. \end{align*} </WRAP> <WRAP quarter column > </WRAP> </WRAP> <callout icon="fa fa-exclamation" color="red" title="Reminder:"> * The **cut-off frequency** $f_\rm c$ for high-pass and low-pass filters is the frequency at which the ohmic resistance just equals the value of the impedance. * The cut-off frequency separates a range in which the filter allows signals through from one in which they are suppressed (=blocked). * At the cut-off frequency, the phase $\varphi = 45°$ and the amplitude $A = \frac{1}{\sqrt{2}}$. * In German the cut-off Frequency is called //Grenzfrequenz// $f_{\rm Gr}$ These statements apply to single-stage passive filters, i.e. one RL or one RC element. Multistage filters are considered in circuit engineering. </callout> The cut-off frequency, in this case, is given by: \begin{align*} R &= \omega L \\ \omega _{\rm c} &= \frac{R}{L} \\ 2 \pi f_{\rm c} &= \frac{R}{L} \quad \rightarrow \quad \boxed{f_{\rm c} = \frac{R}{2 \pi \cdot L}} \end{align*} ==== 7.2.2 RL Low Pass ==== <WRAP> <imgcaption imageNo04 | Circuit, pointer diagram, and amplitude and phase response of RL low-pass filter> </imgcaption> {{drawio>AmplitudenPhasengangRLTiefpass.svg}} </WRAP> So far, only one variant of the RL element has been considered, namely the one where the output voltage $\underline{U}_{\rm O}$ is tapped at the inductance. \\ Here we will briefly discuss what happens when the two components are swapped. In this case, the normalized transfer function is given by: \begin{align*} \underline{A}_{\rm norm} = \frac {1}{\sqrt{1 + (\omega L / R)^2}}\cdot {\rm e}^{-{\rm j} \; \arctan \frac{\omega L}{R} } \end{align*} The cut-off frequency is again given by $f_{\rm c} = \frac{R}{2 \pi \cdot L}$. <WRAP centeralign> <imgcaption imageNo6 | RL low pass filter> </imgcaption>\\ {{url>https://www.falstad.com/afilter/circuitjs.html?cct=$+1+0.000005+5+50+5+50%0A%25+4+1630997.1347384118%0Ar+224+208+224+80+0+35%0AO+224+80+336+80+0%0Ag+224+208+224+240+0%0A170+64+80+32+80+3+20+1000+5+0.1%0Al+64+80+224+80+0+0.001+0%0Ao+3+16+0+34+5+0.00009765625+0+-1+in%0Ao+1+16+0+34+2.5+0.00009765625+1+-1+out%0A 500,500 noborder}} </WRAP> ~~PAGEBREAK~~ ~~CLEARFIX~~ ===== 7.3 RC Series Circuit ===== ==== 7.3.1 RC High Pass ==== <WRAP> <imgcaption imageNo05 | Circuit, pointer diagram, and amplitude and phase response of the RC high-pass filter> </imgcaption> {{drawio>AmplitudenPhasengangRCHochpass.svg}} </WRAP> Now a voltage divider is to be constructed by a resistor $R$ and a capacity $C$. Quite similar to the previous chapters, the transfer function can also be determined here. Here results as normalized transfer function: \begin{align*} \underline{A}_{\rm norm} = \frac {\omega RC}{\sqrt{1 + (\omega RC)^2}}\cdot {\rm e}^{\frac{\pi}{2}-{\rm j} \; \arctan (\omega RC) } \end{align*} In this case, the normalization variable $x = \omega RC$. Again, the cut-off frequency is determined by equating $R$ and the magnitude of the impedance of the capacitance: \begin{align*} R &= \frac{1}{\omega_{\rm c} C} \\ \omega_{\rm c} &= \frac{1}{RC} \\ 2 \pi f_{\rm c} &= \frac{1}{RC} \quad \rightarrow \quad \boxed{f_{\rm c} = \frac{1}{2 \pi\cdot RC} } \end{align*} <WRAP centeralign> <imgcaption imageNo7 | RC high pass filter> </imgcaption>\\ {{url>https://www.falstad.com/afilter/circuitjs.html?cct=$+1+0.000005+5+50+5+50%0A%25+4+1630997.1347384118%0Ac+64+80+224+80+0+0.000001+0%0Ar+224+80+224+208+0+35%0AO+224+80+336+80+0%0Ag+224+208+224+240+0%0A170+64+80+32+80+3+20+1000+5+0.1%0Ao+4+16+0+34+5+0.00009765625+0+-1+in%0Ao+2+16+0+34+2.5+0.00009765625+1+-1+out%0A 500,500 noborder}} </WRAP> ~~PAGEBREAK~~ ~~CLEARFIX~~ ==== 7.3.2 RC Low Pass ==== <WRAP> <imgcaption imageNo06 | Circuit, pointer diagram, and amplitude and phase response of RC low-pass filter> </imgcaption> {{drawio>AmplitudenPhasengangRCTiefpass.svg}} </WRAP> Again, the voltage at the impedance is to be used as the output voltage. This results in a low-pass filter. Here results as normalized transfer function: \begin{align*} \underline{A}_{\rm norm} = \frac {1}{\sqrt{1 + (\omega RC)^2}}\cdot {\rm e}^{-{\rm j} \; \arctan (\omega RC) } \end{align*} Also, the cut-off frequency is given by $f_{\rm c} =\frac{1}{2 \pi\cdot RC}$ ~~PAGEBREAK~~ ~~CLEARFIX~~ <WRAP centeralign> <imgcaption imageNo8 | RC low pass filter> </imgcaption>\\ {{url>https://www.falstad.com/afilter/circuitjs.html?cct=$+1+0.000005+5+50+5+50%0A%25+4+1630997.1347384118%0Ac+224+208+224+80+0+0.000001+0%0Ar+64+80+224+80+0+35%0AO+224+80+336+80+0%0Ag+224+208+224+240+0%0A170+64+80+32+80+3+20+1000+5+0.1%0Ao+4+16+0+34+5+0.00009765625+0+-1+in%0Ao+2+16+0+34+2.5+0.00009765625+1+-1+out%0A 500,500 noborder}} </WRAP> CKG Edit