Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
electrical_engineering_1:aufgabe_1.7.6_mit_rechnung [2023/02/11 23:07] – mexleadmin | electrical_engineering_1:aufgabe_1.7.6_mit_rechnung [2023/03/19 17:52] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | <panel type=" | + | <panel type=" |
- | On the rotor of an asynchronous motor, the windings are designed in copper. The length of the winding wire is 40 m. The diameter is 0.4 mm. When the motor is started, it is uniformly cooled down to the ambient temperature of 20°C. During operation the windings on the rotor have a temperature of 90°C.\\ | + | On the rotor of an asynchronous motor, the windings are designed in copper. |
- | $\alpha_{Cu, | + | The length of the winding wire is $40~\rm{m}$. |
- | $\beta_{Cu,20°C}=0.6 \cdot 10^{-6} \frac{1}{K^2}$\\ | + | The diameter is $0.4~\rm{mm}$. |
- | $\rho_{Cu,20°C}=0.0178 \frac{\Omega mm^2}{m}$ | + | When the motor is started, it is uniformly cooled down to the ambient temperature of $20~°\rm{C}$. |
+ | During operation the windings on the rotor have a temperature of $90~°\rm{C}$. \\ | ||
+ | $\alpha_{Cu, | ||
+ | $ \beta_{Cu,20~°\rm{C}}=0.6 \cdot 10^{-6} | ||
+ | $ \rho_{Cu,20~°\rm{C}}=0.0178 | ||
- | Use both the linear and quadratic temperature coefficients! 1. determine the resistance of the wire for $T = 20°C$. | + | Use both the linear and quadratic temperature coefficients! |
+ | 1. determine the resistance of the wire for $T = 20~°\rm{C}$. | ||
<button size=" | <button size=" | ||
- | \begin{align*} R_{20°C} &= \rho_{Cu,20°C} \cdot \frac{l}{A} && | \text{with } A = r^2 \cdot \pi = \frac{1}{4} d^2 \cdot \pi \\ R_{20°C} &= \rho_{Cu,20°C} \cdot \frac{4 \cdot l}{d^2 \cdot \pi} && \\ R_{20°C} &= 0.0178 \frac{\Omega mm^2}{m} \cdot \frac{4 \cdot 40m}{(0,4mm)^2 \cdot \pi} && \\ \end{align*} | + | \begin{align*} |
+ | R_{20~°\rm{C}} &= \rho_{Cu,20~°\rm{C}} \cdot \frac{l}{A} && | \text{with } A = r^2 \cdot \pi = \frac{1}{4} d^2 \cdot \pi \\ | ||
+ | R_{20~°\rm{C}} &= \rho_{Cu,20~°\rm{C}} \cdot \frac{4 \cdot l}{d^2 \cdot \pi} && \\ | ||
+ | R_{20~°\rm{C}} &= 0.0178 | ||
+ | \end{align*} | ||
</ | </ | ||
- | <button size=" | + | <button size=" |
+ | \begin{align*} | ||
+ | R_{20~°\rm{C}} &= 5.666 ~\Omega \rightarrow 5.7 ~\Omega \\ | ||
+ | \end{align*} | ||
+ | \\ | ||
</ | </ | ||
- | 2. what is the increase in resistance $\Delta R$ between $20°C$ and $90°C$ for one winding? | + | |
+ | 2. what is the increase in resistance $\Delta R$ between $20~\rm °C$ and $90~\rm °C$ for one winding? | ||
<button size=" | <button size=" | ||
- | \begin{align*} R_{90°C} &= R_{20°C} \cdot ( 1 + \alpha_{Cu,20°C} \cdot \Delta T + \beta_{Cu,20°C} \cdot \Delta T^2 ) && | \text{with } \Delta T = T_2 - T_1 = 90°C - 20°C = 70 °C = 70 K\\ \Delta R &= R_{20°C} \cdot ( \alpha_{Cu,20°C} \cdot \Delta T + \beta_{Cu,20°C} \cdot \Delta T^2 ) \\ \Delta R &= 5.666 \Omega \cdot ( 0.0039 \frac{1}{K} \cdot 70K + 0.6 \cdot 10^{-6} \frac{1}{K^2} \cdot (70K)^2 ) \\ \end{align*} | + | \begin{align*} |
+ | R_{90\rm{°C}} &= R_{20\rm{°C}} \cdot ( 1 + \alpha_{Cu,20°\rm{C}} \cdot \Delta T + \beta_{Cu,20°\rm{C}} \cdot \Delta T^2 ) && | \text{with } \Delta T = T_2 - T_1 = 90~°\rm{C} | ||
+ | \Delta R &= R_{20°\rm{C}} \cdot ( \alpha_{Cu,20°\rm{C}} \cdot \Delta T + \beta_{Cu,20°\rm{C}} \cdot \Delta T^2 ) \\ | ||
+ | \Delta R &= 5.666 \Omega \cdot ( 0.0039 | ||
+ | \end{align*} | ||
</ | </ | ||
- | <button size=" | + | <button size=" |
+ | \begin{align*} | ||
+ | \Delta R &= 1.56 ~\Omega \rightarrow 1.6 ~\Omega \\ | ||
+ | \end{align*} | ||
+ | \\ | ||
</ | </ | ||
</ | </ | ||