Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
electrical_engineering_1:aufgabe_1.7.6_mit_rechnung [2021/10/06 11:28] – [Bearbeiten - Panel] tfischer | electrical_engineering_1:aufgabe_1.7.6_mit_rechnung [2023/03/19 17:52] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | <panel type=" | + | <panel type=" |
On the rotor of an asynchronous motor, the windings are designed in copper. | On the rotor of an asynchronous motor, the windings are designed in copper. | ||
- | The length of the winding wire is 40 m. | + | The length of the winding wire is $40~\rm{m}$. |
- | The diameter is 0.4 mm. | + | The diameter is $0.4~\rm{mm}$. |
- | When the motor is started, it is uniformly cooled down to the ambient temperature of 20°C. | + | When the motor is started, it is uniformly cooled down to the ambient temperature of $20~°\rm{C}$. |
- | During operation the windings on the rotor have a temperature of 90°C. \\ | + | During operation the windings on the rotor have a temperature of $90~°\rm{C}$. \\ |
- | $\alpha_{Cu, | + | $\alpha_{Cu, |
- | $\beta_{Cu,20°C}=0.6 \cdot 10^{-6} | + | $ \beta_{Cu,20~°\rm{C}}=0.6 \cdot 10^{-6} |
- | $\rho_{Cu,20°C}=0.0178 \frac{\Omega mm^2}{m}$ | + | $ \rho_{Cu,20~°\rm{C}}=0.0178 |
Use both the linear and quadratic temperature coefficients! | Use both the linear and quadratic temperature coefficients! | ||
- | 1. determine the resistance of the wire for $T = 20°C$. | + | 1. determine the resistance of the wire for $T = 20~°\rm{C}$. |
<button size=" | <button size=" | ||
\begin{align*} | \begin{align*} | ||
- | R_{20°C} &= \rho_{Cu,20°C} \cdot \frac{l}{A} && | \text{with } A = r^2 \cdot \pi = \frac{1}{4} d^2 \cdot \pi \\ | + | R_{20~°\rm{C}} &= \rho_{Cu,20~°\rm{C}} \cdot \frac{l}{A} && | \text{with } A = r^2 \cdot \pi = \frac{1}{4} d^2 \cdot \pi \\ |
- | R_{20°C} &= \rho_{Cu,20°C} \cdot \frac{4 \cdot l}{d^2 \cdot \pi} && \\ | + | R_{20~°\rm{C}} &= \rho_{Cu,20~°\rm{C}} \cdot \frac{4 \cdot l}{d^2 \cdot \pi} && \\ |
- | R_{20°C} &= 0.0178 \frac{\Omega mm^2}{m} \cdot \frac{4 \cdot 40m}{(0,4mm)^2 \cdot \pi} && \\ | + | R_{20~°\rm{C}} &= 0.0178 |
\end{align*} | \end{align*} | ||
Zeile 25: | Zeile 25: | ||
<button size=" | <button size=" | ||
\begin{align*} | \begin{align*} | ||
- | R_{20°C} &= 5.666 \Omega \rightarrow 5.7 \Omega \\ | + | R_{20~°\rm{C}} &= 5.666 ~\Omega \rightarrow 5.7 ~\Omega \\ |
\end{align*} | \end{align*} | ||
\\ | \\ | ||
Zeile 31: | Zeile 31: | ||
- | 2. what is the increase in resistance $\Delta R$ between $20°C$ and $90°C$ for one winding? | + | 2. what is the increase in resistance $\Delta R$ between $20~\rm °C$ and $90~\rm °C$ for one winding? |
Zeile 37: | Zeile 37: | ||
\begin{align*} | \begin{align*} | ||
- | R_{90°C} &= R_{20°C} \cdot ( 1 + \alpha_{Cu,20°C} \cdot \Delta T + \beta_{Cu,20°C} \cdot \Delta T^2 ) && | \text{with } \Delta T = T_2 - T_1 = 90°C - 20°C = 70 °C = 70 K\\ | + | R_{90\rm{°C}} &= R_{20\rm{°C}} \cdot ( 1 + \alpha_{Cu,20°\rm{C}} \cdot \Delta T + \beta_{Cu,20°\rm{C}} \cdot \Delta T^2 ) && | \text{with } \Delta T = T_2 - T_1 = 90~°\rm{C} |
- | \Delta R &= R_{20°C} \cdot ( \alpha_{Cu,20°C} \cdot \Delta T + \beta_{Cu,20°C} \cdot \Delta T^2 ) \\ | + | \Delta R &= R_{20°\rm{C}} \cdot ( \alpha_{Cu,20°\rm{C}} \cdot \Delta T + \beta_{Cu,20°\rm{C}} \cdot \Delta T^2 ) \\ |
- | \Delta R &= 5.666 \Omega \cdot ( 0.0039 \frac{1}{K} \cdot 70K + 0.6 \cdot 10^{-6} | + | \Delta R &= 5.666 \Omega \cdot ( 0.0039 |
\end{align*} | \end{align*} | ||
Zeile 46: | Zeile 46: | ||
<button size=" | <button size=" | ||
\begin{align*} | \begin{align*} | ||
- | \Delta R &= 1.56 \Omega \rightarrow 1.6 \Omega \\ | + | \Delta R &= 1.56 ~\Omega \rightarrow 1.6 ~\Omega \\ |
\end{align*} | \end{align*} | ||
\\ | \\ |