Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
ee2:task_ludzwiuhjxitz85b_with_calculation [2024/07/03 02:02] – angelegt mexleadmin | ee2:task_ludzwiuhjxitz85b_with_calculation [2024/07/03 10:03] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | {{tag> | + | {{tag> |
# | # | ||
<fs medium> | <fs medium> | ||
- | A simple | + | A single |
The following figure shows the variation of the flux $\Phi(t)$ over time. \\ \\ | The following figure shows the variation of the flux $\Phi(t)$ over time. \\ \\ | ||
- | Calculate the variation of the induced voltage $U_{\rm ind}(t)$ over time and draw it in a separate diagram. | + | Calculate the variation of the induced voltage $u_{\rm ind}(t)$ over time and draw it in a separate diagram. |
{{drawio> | {{drawio> | ||
Zeile 13: | Zeile 13: | ||
Based on Faraday' | Based on Faraday' | ||
\begin{align*} | \begin{align*} | ||
- | U_{\rm ind} = - {{ {\rm d} }\over{ {\rm d}t}} \Phi(t)\\ | + | u_{\rm ind} =& - {{ {\rm d} }\over{ {\rm d}t}} \Psi(t) \bigg\rvert_{n=1}\\ |
+ | =& | ||
\end{align*} | \end{align*} | ||
For a linear function, the derivative can be substituted by Deltas ($\rm d \rightarrow \Delta$): \\ | For a linear function, the derivative can be substituted by Deltas ($\rm d \rightarrow \Delta$): \\ | ||
\begin{align*} | \begin{align*} | ||
- | U_{\rm ind} = - {{ \Delta \Phi(t)}\over{ \Delta t}} = - { { \Phi(t_{\rm n+1} ) - \Phi(t_{\rm n} ) } \over { t_{\rm n+1} - t_{\rm n} } } \\ | + | u_{\rm ind} = - {{ \Delta \Phi(t)}\over{ \Delta t}} = - { { \Phi(t_{\rm n+1} ) - \Phi(t_{\rm n} ) } \over { t_{\rm n+1} - t_{\rm n} } } \\ |
\end{align*} | \end{align*} | ||
Zeile 25: | Zeile 26: | ||
{{drawio> | {{drawio> | ||
- | * For the intervals $\rm I$, $\rm III$, and $\rm V$ , the flux $\Phi(t)$ is constant. Therefore, $\Delta \Phi(t)=0$ and $U_{\rm ind}(t)=0{~\rm V}$ \\ {{drawio> | + | * For the intervals $\rm I$, $\rm III$, and $\rm V$ , the flux $\Phi(t)$ is constant. Therefore, $\Delta \Phi(t)=0$ and $u_{\rm ind}(t)=0{~\rm V}$ \\ {{drawio> |
* For the interval | * For the interval | ||
* The change in the flux is: $ \Delta \Phi(t) = 1.5 \cdot 10^{-4} {~\rm Vs} - 4.5 \cdot 10^{-4} {~\rm Vs}= - 3.0 \cdot 10^{-4} {~\rm Vs}$ | * The change in the flux is: $ \Delta \Phi(t) = 1.5 \cdot 10^{-4} {~\rm Vs} - 4.5 \cdot 10^{-4} {~\rm Vs}= - 3.0 \cdot 10^{-4} {~\rm Vs}$ | ||
* The time span is: $0.2 ~\rm s$ | * The time span is: $0.2 ~\rm s$ | ||
- | * Conclusively, | + | * Conclusively, |
* For the interval | * For the interval | ||
* The change in the flux is: $ \Delta \Phi(t) = 0 \cdot 10^{-4} {~\rm Vs} - 1.5 \cdot 10^{-4} {~\rm Vs}= - 1.5 \cdot 10^{-4} {~\rm Vs}$ | * The change in the flux is: $ \Delta \Phi(t) = 0 \cdot 10^{-4} {~\rm Vs} - 1.5 \cdot 10^{-4} {~\rm Vs}= - 1.5 \cdot 10^{-4} {~\rm Vs}$ | ||
* The time span is: $0.2 ~\rm s$ | * The time span is: $0.2 ~\rm s$ | ||
- | * Conclusively, | + | * Conclusively, |
# | # |