Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
ee2:task_ddjurcpk494go2q1_with_calculation [2024/07/15 19:09] – angelegt mexleadmin | ee2:task_ddjurcpk494go2q1_with_calculation [2024/07/15 21:37] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
{{tag> | {{tag> | ||
- | # | + | # |
<fs medium> | <fs medium> | ||
Zeile 11: | Zeile 11: | ||
{{drawio> | {{drawio> | ||
- | 1. What is the magnitude of the magnetic field strength $H$ at $\rm (-0.1 ~mm | 0)$ and $\rm (0.55 ~mm | 0)$? | + | 1. What is the magnitude of the magnetic field strength $H$ at $\rm (0.1 ~mm | 0)$ and $\rm (0.55 ~mm | 0)$? |
# | # | ||
+ | |||
+ | The magnitude of the magnetic field strength $H$ can be calculated by: $H = {{I}\over{2 \pi \cdot r}} $ \\ | ||
+ | So, we get for $H_{\rm i}$ at $\rm (0.1 ~mm | 0)$, and $H_{\rm o}$ at $\rm (0.55 ~mm | 0)$: | ||
+ | |||
\begin{align*} | \begin{align*} | ||
- | C & | + | H_{\rm i} &= {{I}\over{2 \pi \cdot r_{\rm i}}} \\ |
- | & | + | & |
+ | H_{\rm o} & | ||
+ | &= {{+3.3 A}\over{2 \pi \cdot { 0.55 \cdot 10^{-3}~\rm m}}} \\ | ||
\end{align*} | \end{align*} | ||
+ | Hint: For the direction, one has to consider the right-hand rule. | ||
+ | By this, we see that the $H$-field on the right side points downwards. \\ | ||
+ | Therefore, the sign of the $H$-field is negative. \\ | ||
+ | But here, only the magnitude was questioned! | ||
# | # | ||
# | # | ||
- | $C = 1.1 ~\rm pF$ | + | * for $(0.1 ~/rm mm | 0)$ : $H_{\rm i} = 5.25... ~\rm A/m$ |
+ | * for $(0.55 ~/rm mm| 0)$ : $H_{\rm o} = 0.955... | ||
# | # | ||
- | 2. Plot the graph of the magnitude of $H(x)$ from $\rm (-0.6 ~mm | 0)$ to $\rm (0.6 ~mm | 0)$ in one diagram. Use proper dimensions and labels for the diagram! | + | 2. Plot the graph of the magnitude of $H(x)$ with $x \in \rm [-0.6~mm, +0.6~mm]$ from $\rm (-0.6 ~mm | 0)$ to $\rm (0.6 ~mm | 0)$ in one diagram. Use proper dimensions and labels for the diagram! |
# | # | ||
- | \begin{align*} | + | |
- | C &= \varepsilon_0 \varepsilon_r | + | |
- | | + | * For $x$ within the outer conductor one also gets a linear proportionality with a similar approach. |
- | \end{align*} | + | |
# | # | ||
# | # | ||
- | $C = 1.1 ~\rm pF$ | + | {{drawio> |
# | # | ||
Zeile 42: | Zeile 51: | ||
# | # | ||
+ | The magnitude of the electric displacement field $D$ can be calculated by: $\int D {\rm d}A = Q$. \\ | ||
+ | Here, for any position radial to the center, the surrounding area is the surface of a cylindrical shape (here for simplicity without the round endings). \\ | ||
+ | This leads to: | ||
\begin{align*} | \begin{align*} | ||
- | C & | + | D(x) &= {{Q}\over{A}} \\ |
- | & | + | |
\end{align*} | \end{align*} | ||
+ | |||
+ | |||
+ | So, we get for $D_{\rm i}$ at $\rm (0.1 ~mm | 0)$, and $D_{\rm o}$ at $\rm (0.55 ~mm | 0)$: | ||
+ | |||
+ | \begin{align*} | ||
+ | D_{\rm i} &= {{Q | ||
+ | &= {{10 \cdot 10^{-9} C}\over{2 \pi \cdot { 0.1 \cdot 10^{-3}~\rm m} \cdot 0.5 ~\rm m}} \\ | ||
+ | D_{\rm o} &= {{Q | ||
+ | &= {{10 \cdot 10^{-9} C}\over{2 \pi \cdot { 0.55 \cdot 10^{-3}~\rm m}\cdot 0.5 ~\rm m}} \\ | ||
+ | \end{align*} | ||
+ | |||
+ | Hint: For the direction, one has to consider the sign of the enclosed charge. | ||
+ | By this, we see that the $D$-field is positive. \\ | ||
+ | But here, again only the magnitude was questioned! | ||
# | # | ||
# | # | ||
- | $C = 1.1 ~\rm pF$ | + | * for $(0.1 ~\rm mm | 0)$ : $D_{\rm i} = 31.8... ~\rm uC/m^2$ |
+ | * for $(0.55 ~\rm mm| 0)$ : $D_{\rm o} = 5.78... ~\rm uC/m^2$ | ||
# | # | ||
- | 4. Plot the graph of the magnitude of $D(x)$ from $\rm (-0.6 ~mm | 0)$ to $\rm (0.6 ~mm | 0)$ in one diagram. Use proper dimensions and labels for the diagram! | + | 4. Plot the graph of the magnitude of $D(x)$ with $x \in \rm [-0.6~mm, +0.6~mm]$ from $\rm (-0.6 ~mm | 0)$ to $\rm (0.6 ~mm | 0)$ in one diagram. Use proper dimensions and labels for the diagram! |
# | # | ||
- | \begin{align*} | + | |
- | C &= \varepsilon_0 \varepsilon_r | + | |
- | | + | |
- | \end{align*} | + | |
# | # | ||
# | # | ||
- | $C = 1.1 ~\rm pF$ | + | {{drawio> |
# | # | ||