DW EditSeite anzeigenÄltere VersionenLinks hierherAlles aus-/einklappenNach oben Diese Seite ist nicht editierbar. Sie können den Quelltext sehen, jedoch nicht verändern. Kontaktieren Sie den Administrator, wenn Sie glauben, dass hier ein Fehler vorliegt. <panel type="info" title="Exercise 5.2.6: Charging and Discharging of RC elements (exam task, ca. 11 % of a 60-minute exam, WS2020)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <WRAP right> {{:elektrotechnik_1:schaltung_klws2020_3_2_1.jpg?400|schaltung_klws2020_3_2_1.jpg}}</WRAP> The circuit shown right is given with the following data: * $U = 10 ~{\rm V}$ * $I = 4 ~{\rm mA}$ * $R_1 = 100 ~\Omega, R_2 = 80 ~\Omega, R_3 = 50 ~\Omega, R_4 = 10 ~\Omega$ * $C = 40 ~{\rm nF}$ At first, the voltage drop on the capacitor $u_C = 0$, and all switches are open. The switch S1 will be closed at $t = 0$. <button size="xs" type="link" collapse="Loesung_7_2_6_6_Simu">{{icon>eye}} Simulation</button><collapse id="Loesung_7_2_6_6_Simu" collapsed="true"> <WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjOB0AMt-CwFMC0B2E1IGYAsBOaPAJnwFY1cA2MADlzCpDIjJF22dTDACgA3EMWK4Q2MsSEjwaJtEzt5YeSsyQyvAM5TRYWUNq0Zc8CABmAQwA2mpLwBOBo3qbZ6xhcugOx7l79FiMhNabwBjAKFgyPFJeVxUIxVeAHcYiR0xDO9tN119XFCPJXNrWx9CpQKi2IUybzS8rMlK5sxU9hqMilds3gBLZn1iNEketpUYaFwfcZGx-TBiJPAGoaYlowIN5fbtDklN9nwdlYhLGzs0g-BdpqO1+7u-fW8Ae3ZTJWJsaDip6AQLBwIFCT6cACuAH0AMK8IA noborder}} </WRAP> </collapse> 1. Determine the time constant $\tau$ for this charging process. <button size="xs" type="link" collapse="Loesung_7_2_6_1_Tipps">{{icon>eye}} Tips</button><collapse id="Loesung_7_2_6_1_Tipps" collapsed="true"> * What equivalent circuit can be found for the mentioned states of the switches? * What parameter do you need to determine $\tau$? * The charging current is flown through which component? </collapse> <button size="xs" type="link" collapse="Loesung_7_2_6_1_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_7_2_6_1_Lösungsweg" collapsed="true"> The electrical components $R_1$, $R_2$, and $C$ are connected in series with a source $U$. The time constant $\tau$ is therefore: \begin{align*} \tau &= (R_1 + R_2) \cdot C \\ \tau &= 180 ~\Omega \cdot 40 ~{\rm nF} \end{align*} </collapse> <button size="xs" type="link" collapse="Loesung_7_2_6_1_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_7_2_6_1_Endergebnis" collapsed="true"> \begin{align*} \tau = 7.2 ~{\rm µs} \end{align*} \\ </collapse> 2. What is the value of the voltage $u_C(t)$ drop over the capacitor $C$ at $t=10 ~{\rm µs}$? <button size="xs" type="link" collapse="Loesung_7_2_6_2_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_7_2_6_2_Lösungsweg" collapsed="true"> \begin{align*} U_C(t) = U \cdot (1 - e^{-t/\tau}) \\ U_C(t) = 10 ~{\rm V} \cdot (1 - e^{-10 ~{\rm µs}/7.2 ~{\rm µs}}) \end{align*} </collapse> <button size="xs" type="link" collapse="Loesung_7_2_6_2_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_7_2_6_2_Endergebnis" collapsed="true"> \begin{align*} U_C(t) = 7.506 ~{\rm V} \rightarrow 7.5 ~{\rm V} \end{align*} \\ </collapse> 3. What is the value of the energy, when the capacitor is fully charged? <button size="xs" type="link" collapse="Loesung_7_2_6_3_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_7_2_6_3_Lösungsweg" collapsed="true"> \begin{align*} W_C &= \frac{1}{2} C U^2 \\ &= \frac{1}{2} \cdot 40~{\rm nF} \cdot (10~{\rm V})^2 \end{align*} </collapse> <button size="xs" type="link" collapse="Loesung_7_2_6_3_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_7_2_6_3_Endergebnis" collapsed="true"> \begin{align*} W_C = 2 ~{\rm µJ} \end{align*} \\ </collapse> 4. Determine the new time constant when the switch $S_1$ will be opened and the switch $S_3$ will be closed simultaneously. <button size="xs" type="link" collapse="Loesung_7_2_6_4_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_7_2_6_4_Lösungsweg" collapsed="true"> The capacitor $C$ discharges by the series connected resistors $R_2$ und $R_3$. \begin{align*} \tau &= (R_2 + R_3) \cdot C \\ &= 130 ~\Omega \cdot 40 ~{\rm nF} \end{align*} </collapse> <button size="xs" type="link" collapse="Loesung_7_2_6_4_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_7_2_6_4_Endergebnis" collapsed="true"> \begin{align*} \tau = 5.2 ~{\rm µs} \end{align*} \\ </collapse> 5. When the capacitor is empty all switches will be opened. The switch $S_4$ will be closed at $t= 0$. \\ What is the voltage $u_C$ at the capacitor C after $t = 1 ~ {\rm µs}$? <button size="xs" type="link" collapse="Loesung_7_2_6_5_Tipps">{{icon>eye}} Tips</button><collapse id="Loesung_7_2_6_5_Tipps" collapsed="true"> * Through the current source there is a continuous flow of electric charge into the capacitor. * The resistors passed by the current on the way to the capacitor are irrelevant. They only increase the voltage of an ideal current source to guarantee the current. </collapse> <button size="xs" type="link" collapse="Loesung_7_2_6_5_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_7_2_6_5_Lösungsweg" collapsed="true"> The voltage $U_C$ is in general: $U_C = \frac{Q}{C}$. In this case, the constant current I results in $Q = \int I {\rm d}t = I \cdot t$ \begin{align*} U_C(t) &= \frac{Q}{C} \\ U_C(t) &= \frac{I \cdot t}{C} \\ U_C(1μs) &= \frac{4~{\rm mA} \cdot 1~{\rm µs}}{40~{\rm nF}} = \frac{4 \cdot 10^{-3}~{\rm A} \cdot 1\cdot 10^{-6}~{\rm s}}{40\cdot 10^{-9}~{\rm F}} \\ \end{align*} </collapse> <button size="xs" type="link" collapse="Loesung_7_2_6_5_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_7_2_6_5_Endergebnis" collapsed="true"> \begin{align*} U_C(1~{\rm µs}) &= 1~{\rm V} \\ \end{align*} \\ </collapse> </WRAP></WRAP></panel> CKG Edit