Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
dummy [2023/03/16 14:52] – ↷ Seite von electrical_engineering_1:grundlagen_und_grundbegriffe_dummy nach dummy verschoben und umbenannt mexleadmin | dummy [2025/04/29 01:02] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | ====== 1. Grundlagen und Grundbegriffe ====== | + | xxcxycyxccyxcyxccsvfdds |
- | + | ||
- | ===== 1.1 Physikalische Größen ===== | + | |
- | + | ||
- | < | + | |
- | === Ziele === | + | |
- | + | ||
- | Nach dieser Lektion sollten Sie: | + | |
- | + | ||
- | - die physikalischen Basisgrößen und die dazugehörigen SI-Einheiten kennen. | + | |
- | - die die wichtigsten Präfixe kennen. Sie können der jeweiligen Abkürzung eine Zehnerpotenz zuordnen (G, M, k, d, c, m, µ, n). | + | |
- | - in eine vorhandene Größengleichung gegebene Zahlenwerte und Einheiten einsetzen können. Daraus sollten Sie mit einem Taschenrechner das richtige Ergebnis berechnen können. | + | |
- | - die griechischen Buchstaben zuordnen können. | + | |
- | - immer mit Zahlenwert und Einheit rechnen. | + | |
- | - wissen, dass eine bezogene Größengleichung dimensionslos ist! | + | |
- | </ | + | |
- | + | ||
- | < | + | |
- | Der KIT-Brückenkurs bietet eine ähnliche Einführung zu [[https:// | + | |
- | </ | + | |
- | + | ||
- | ==== Basisgrößen ==== | + | |
- | < | + | |
- | Kurzpräsentation der SI-Einheiten | + | |
- | {{youtube> | + | |
- | + | ||
- | < | + | |
- | + | ||
- | ^ Basisgröße | + | |
- | | Zeit | Sekunde | + | |
- | | Länge | + | |
- | | Stromstärke | + | |
- | | Masse | Kilogramm | + | |
- | | Temperatur | + | |
- | | Stoffmenge | + | |
- | | Lichtstärke | + | |
- | </ | + | |
- | </ | + | |
- | * Für die praktische Anwendung von physikalischen Naturgesetzen werden **physikalische Größen** in mathematische Beziehungen gesetzt. | + | |
- | * Es gibt Basisgrößen auf Basis des SI-Einheitensystems (frz. für Système International d' | + | |
- | * Um die Basisgrößen quantitativ (quantum = lat. "wie groß" | + | |
- | * In der Elektrotechnik sind die ersten drei Basisgrößen (vgl. <tabref tab01>) besonders wichtig. \\ die Masse ist für die Darstellung von Energie und Leistung wichtig. | + | |
- | * Jede physikalische Größe wird durch ein Produkt aus **Zahlenwert** und **Einheit** angegeben: \\ z.B. $I = 2 A$ | + | |
- | * Dies ist die Kurzform von $I = 2\cdot 1A$ | + | |
- | * $I$ ist die physikalische Größe, hier: elektrische Stromstärke | + | |
- | * $\{I\} = 2 $ ist der Zahlenwert | + | |
- | * $ [I] = 1 A$ ist die (Maß-)Einheit, | + | |
- | + | ||
- | ~~PAGEBREAK~~ ~~CLEARFIX~~ | + | |
- | ==== abgeleitete Größen, SI-Einheiten und Präfixe ==== | + | |
- | + | ||
- | < | + | |
- | <WRAP >< | + | |
- | < | + | |
- | ^ Präfix ^ Präfixzeichen ^ Bedeutung ^ | + | |
- | | Yotta | Y | $10^{24}$ | + | |
- | | Zetta | Z | $10^{21}$ | + | |
- | | Exa | E | $10^{18}$ | + | |
- | | Peta | P | $10^{15}$ | + | |
- | | Tera | T | $10^{12}$ | + | |
- | | Giga | G | $10^{9}$ | + | |
- | | Mega | M | $10^{6}$ | + | |
- | | Kilo | k | $10^{3}$ | + | |
- | | Hekto | h | $10^{2}$ | + | |
- | | Deka | de | $10^{1}$ | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | ^ Präfix ^ Präfixzeichen ^ Bedeutung ^ | + | |
- | | Dezi | d | $10^{-1}$ | + | |
- | | Zenti | c | $10^{-2}$ | + | |
- | | Milli | m | $10^{-3}$ | + | |
- | | Mikro | u, $\mu$ | $10^{-6}$ | + | |
- | | Nano | n | $10^{-9}$ | + | |
- | | Piko | p | $10^{-12}$ | + | |
- | | Femto | f | $10^{-15}$ | + | |
- | | Atto | a | $10^{-18}$ | + | |
- | | Zeppto | z | $10^{-21}$ | + | |
- | | Yokto | y | $10^{-24}$ | + | |
- | </ | + | |
- | </ | + | |
- | </ | + | |
- | * Neben den Basisgrößen gibt es auch davon abgeleitete Größen, z.B. $1{{m}\over{s}}$ | + | |
- | * Bei Berechnungen sollten SI-Einheiten bevorzugt werden. Diese sind **ohne Zahlenfaktor** aus den Basisgrößen ableitbar. | + | |
- | * Die Druckeinheit Bar ($bar$) ist eine SI-Einheit | + | |
- | * ABER: Die veraltete Druckeinheit atmosphäre ($=1,013 bar$) ist **__keine__** SI-Einheit | + | |
- | * Um den Zahlenwert nicht zu groß oder zu klein werden zu lassen, ist es möglich einen dezimalen Faktor durch einen Präfix (Vorsatz) zu ersetzen. Diese sind in der <tabref tab02> aufgelistet. | + | |
- | + | ||
- | + | ||
- | Beispiel zur Potenzrechnung | + | |
- | + | ||
- | {{youtube> | + | |
- | + | ||
- | ~~PAGEBREAK~~ ~~CLEARFIX~~ | + | |
- | ==== physikalische Gleichungen ==== | + | |
- | + | ||
- | * Physikalische Gleichungen ermöglichen eine Verknüpfung von physikalischen Größen | + | |
- | * Es sind dabei zwei Arten von physikalische Gleichungen zu unterscheiden: | + | |
- | * Größengleichungen | + | |
- | * normierte Größengleichungen (auch bezogene Größengleichungen genannt) | + | |
- | + | ||
- | <WRAP >< | + | |
- | <callout color=" | + | |
- | + | ||
- | === Größengleichungen === | + | |
- | Bei der überwiegenden Mehrheit der physikalische Gleichungen ergibt sich eine physikalische Einheit, welche ungleich $1$ ist. | + | |
- | \\ \\ | + | |
- | + | ||
- | Beispiel: Kraft $F = m \cdot a$ mit $[F] = kg \cdot {{m}\over{s^2}}$ | + | |
- | \\ \\ | + | |
- | + | ||
- | * Bei Größengleichungen sollte **immer** eine Einheitenkontrolle durchgeführt werden | + | |
- | * Größengleichungen sollten allgemein bevorzugt werden | + | |
- | + | ||
- | </ | + | |
- | </ | + | |
- | <callout color=" | + | |
- | === normierte Größengleichungen === | + | |
- | + | ||
- | Bei normierten Größengleichungen wird der Messwert oder Rechenwert einer Größengleichung durch einen Bezugswert dividiert. | + | |
- | Es entsteht so eine dimensionslose Größe relativ zum Bezugswert. | + | |
- | + | ||
- | Beispiel: Wirkungsgrad $\eta = {{P_{ab}}\over{P_{zu}}}$ | + | |
- | + | ||
- | Als Bezugswert werden häufig: | + | |
- | * Nennwerte (maximal zulässiger Wert im Dauerbetrieb) oder | + | |
- | * Maximalwerte (kurzfristig erreichbarer Maximalwert) | + | |
- | genutzt. | + | |
- | + | ||
- | * Bei normierten Größengleichungen sollten sich die Einheiten **immer** auslöschen | + | |
- | + | ||
- | </ | + | |
- | </ | + | |
- | + | ||
- | <callout title=" | + | |
- | + | ||
- | Gegeben sei ein Körper mit der Masse $m = 100kg$. Der Körper wird um den Weg $s=2m$ angehoben. \\ | + | |
- | Welche Arbeit wird dabei verrichtet? | + | |
- | \\ \\ | + | |
- | physikalische Gleichung: | + | |
- | <WRAP indent>< | + | |
- | Arbeit = Kraft $\cdot$ Weg | + | |
- | \\ $W = F \cdot s \quad\quad\quad\; | + | |
- | \\ $W = m \cdot g \cdot s \quad\quad$ mit $m=100kg$, $s=2m$ und $g=9, | + | |
- | \\ $W = 100kg \cdot 9, | + | |
- | \\ $W = 100\cdot 9,81 \cdot 2 \;\; \cdot \;\; kg \cdot {{m}\over{s^2}} \cdot m$ | + | |
- | \\ $W = 1962 \quad\quad \cdot \quad\quad\; | + | |
- | \\ $W = 1962 Nm = 1962 J $ | + | |
- | </ | + | |
- | + | ||
- | </ | + | |
- | + | ||
- | ==== Buchstaben für physikalische Größen ==== | + | |
- | + | ||
- | < | + | |
- | <WRAP >< | + | |
- | < | + | |
- | ^ Groß-\\ buchstaben ^ Klein-\\ buchstaben^ Name ^ | + | |
- | | $A$ | $\alpha$ | + | |
- | | $B$ | $\beta$ | + | |
- | | $\Gamma$ | + | |
- | | $\Delta$ | + | |
- | | $E$ | $\epsilon$, $\varepsilon$ | + | |
- | | $Z$ | $\zeta$ | + | |
- | | $H$ | $\eta$ | + | |
- | | $\Theta$ | + | |
- | | $I$ | $\iota$ | + | |
- | | $K$ | $\kappa$ | + | |
- | | $\Lambda$ | + | |
- | | $M$ | $\mu$ | My | | + | |
- | </ | + | |
- | </ | + | |
- | < | + | |
- | ^ Groß-\\ buchstaben ^ Klein-\\ buchstaben^ Name ^ | + | |
- | | $N$ | $\nu$ | Ny | | + | |
- | | $\Xi$ | $\xi$ | Xi | | + | |
- | | $O$ | $\omicron$ | + | |
- | | $\Pi$ | $\pi$ | Pi | | + | |
- | | $R$ | $\rho$, $\varrho$ | + | |
- | | $\Sigma$ | + | |
- | | $T$ | $\tau$ | + | |
- | | $\Upsilon$ | + | |
- | | $\Phi$ | + | |
- | | $X$ | $\chi$ | + | |
- | | $\Psi$ | + | |
- | | $\Omega$ | + | |
- | </ | + | |
- | </ | + | |
- | {{youtube> | + | |
- | + | ||
- | </ | + | |
- | + | ||
- | In der Physik und Elektrotechnik wurde häufig versucht für physikalische Größen dem (englischen) Begriff naheliegende Buchstaben zu finden. \\ | + | |
- | So sind $C$ für // | + | |
- | Hierbei ist aber bereits schon zu sehen, dass das $C$ sowohl für die thermische Kapazität, als auch die elektrische Kapazität genutzt. | + | |
- | + | ||
- | Das lateinische Alphabet hat für den Umfang der Physik nicht genug Buchstaben, um Konflikte zu vermeiden. | + | |
- | Bei verschiedenen physikalischen Größen wird deswegen auf griechischen Buchstaben zurückgegriffen (siehe <tabref tab03> | + | |
- | + | ||
- | Besonders in Elektrotechnik wird durch Groß-/ | + | |
- | * eine zeitlich konstante (zeitunabhängige) Größe handelt, \\ z.B. die Periode $T$ | + | |
- | * oder um eine zeitabhängige Größe handelt, \\ z.B. die Momentanspannung $u(t)$ | + | |
- | + | ||
- | Die relevanten griechischen Buchstaben für die Elektrotechnik werden in folgendem Video beschrieben. | + | |
- | + | ||
- | + | ||
- | ~~PAGEBREAK~~ ~~CLEARFIX~~ | + | |
- | ==== Übungen ==== | + | |
- | + | ||
- | <panel type=" | + | |
- | {{youtube> | + | |
- | </ | + | |
- | + | ||
- | <panel type=" | + | |
- | Rechnen Sie Schritt für Schritt folgende Werte um: | + | |
- | - Eine Fahrzeuggeschwindigkeit von 80 km/h in m/s | + | |
- | - Eine Energie von 60 Joule in kWh (1 Joule = 1 Watt*Sekunde) | + | |
- | - Die Anzahl elektrolytisch abgeschiedener, | + | |
- | - Aufgenommene Energie eines Kleinstverbrauchers, | + | |
- | </ | + | |
- | + | ||
- | <panel type=" | + | |
- | Rechnen Sie Schritt für Schritt folgende Werte um: | + | |
- | Wie viele Minuten könnte eine ideale Batterie mit 10 kWh einen Verbraucher mit 3W betreiben? | + | |
- | </ | + | |
- | + | ||
- | <panel type=" | + | |
- | Rechnen Sie Schritt für Schritt folgende Werte um: | + | |
- | Wie viel Energie verbraucht ein durchschnittlicher Haushalt am Tag, wenn er eine mittlere Leistung von 500 W aufnimmt? Wie viele Schokoriegel (je 2000 kJ) entspricht das? | + | |
- | </ | + | |