Dies ist eine alte Version des Dokuments!
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{matrix}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{matrix} \end{align*}
At first we will switch the representation to the following:
\begin{align*} \begin{matrix}{ll} /(a + (b \cdot (/a + c) \cdot 1 ) + a ) & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{matrix} \end{align*}
so lets start $\color{white}{\quad\quad\quad} $
$/(a + (b \cdot (/a + c) \cdot 1 ) + a )$
1. Put space between the digits
$\quad$
\begin{align*} \begin{matrix}{ll} /(a + (b \cdot (/a + c) \color{blue}{\cdot 1} ) + a ) & \color{blue}{\text{Neutral Element}} \\ \quad\quad\quad\quad\quad\quad & \color{white}{.} \\ \end{matrix} \end{align*}
example for a simplification with the rule for boolean algebra
$\overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a}$
At first we will switch the representation to the following:
$/(a + (b \cdot (/a + c) \cdot 1 ) + a )$
so lets start $\color{white}{\quad\quad\quad} $
$/(a + (b \cdot (/a + c) \cdot 1 ) + a )$