Dies ist eine alte Version des Dokuments!
Exercise 1 : Pure Resistor Network Simplification
(written test, approx. 13% of a 60-minute written test, WS2022)
The following circuit with $R_1=200 \Omega$, $R_2=R_3=100 \Omega$ and the switch $S$ is given.
1. The switch shall now be open. Calculate the equivalent resistance $R_{eq}$ between $A$ and $B$.
With the switch open the resistor $R_3$ dies not take part into the resulting resistor.
The equivalent resistor is given by a parallel configuation of resistors in series:
\begin{align*}
R_{eq} &= (R_2 + R_1 + R_1)||(R_2 + R_2)\\
R_{eq} &= (100 \Omega + 200 \Omega + 200 \Omega )&&||(100 \Omega + 100 \Omega ) &&\\
R_{eq} &= (500 \Omega )&&||(200 \Omega )&&\\
R_{eq} &= {{500 \Omega \cdot 200 \Omega }\over{500 \Omega + 200 \Omega}}&&\\
\end{align*}
\begin{align*}
R_{eq} &= 142.8 \Omega \\
\end{align*}
2. The switch shall now be closed. Calculate the equivalent resistance $R_{eq}$ between $A$ and $B$.
Now a wye-delta transformation is necessary.
Since $R_2=R_3$ and based on the equations for the transformation, the transformed $R_Y$ is given as:
\begin{align*}
R_{Y} &= {{R_2 \cdot R_2}\over{R_2 + R_2 + R_2}} \\
&= {{(100 \Omega)^2}\over{3 \cdot 100 \Omega}} \\
&= {{1}\over{3}} \cdot 100 \Omega = 33.33 \Omega
\end{align*}
The equivalent resistor is given by a parallel configuation of resistors in series: \begin{align*} R_{eq} &= R_Y + (R_Y + R_1 + R_1)||(R_Y + R_2)\\ R_{eq} &= 33.33 \Omega + (33.33 \Omega + 400 \Omega)||(33.33 \Omega + 100 \Omega)\\ \end{align*}
\begin{align*}
R_{eq} &= 135.3 \Omega \\
\end{align*}