Dies ist eine alte Version des Dokuments!
$I.\quad$ Analysis of the Currents
by (2)+(3) | $\color{blue}{I_p} = \color{blue}{I_m} = 0$ |
| Therefore, $I_p$ and $I_m$ are defined |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
by (3)+(5) | $\color{blue}{I_o} = I_m = 0$ |
| By this, $I_o$ is defined |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$II.\quad$ Analysis of the Voltage Amplification
by (0) | $\color{blue}{A_V}=\frac{U_O}{U_I}$ |
| $\quad$ |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_O}{\color{blue}{U_I}}$ |
| with (4) |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_O}{\color{blue}{U_O+U_D}}$ |
| $\quad$ |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{\color{blue}{U_O}}{\color{blue}{U_O}+U_D}$ |
| with (1) |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{\color{blue}{A_D\cdot U_D}}{\color{blue}{A_D\cdot U_D}+U_D}$ |
| $\quad$ |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{A_D\cdot U_D}{A_D\cdot U_D + U_D}$ |
| $\quad$ |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\color{blue}{\frac{A_D\cdot U_D}{A_D\cdot U_D + U_D}}$ |
| Expand with $\frac{1}{A_D\cdot U_D}$ |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\color{blue}{\frac{A_D\cdot U_D\cdot\frac{1}{A_D\cdot U_D}}{(A_D\cdot U_D + U_D)\cdot \frac{1}{A_D\cdot U_D}}}$ |
| $\quad$ |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\color{blue}{\frac{1}{1 + \frac{1}{A_D}}}$ |
| $\quad$ |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{1}{1 + \frac{1}{A_D}}$ |
| $\quad$ |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{1}{1 + \color{blue}{\frac{1}{A_D}}}$ |
| with $\frac{1}{A_D} \xrightarrow{A_D \rightarrow \infty} 0$ |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{1}{1 + \color{blue}{0}}$ |
| $\quad$ |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{1}{1}=1$ |
| $\quad$ |
$\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |