Dies ist eine alte Version des Dokuments!


$I.\quad$ Analysis of the Currents

by (2)+(3)$\color{blue}{I_p} = \color{blue}{I_m} = 0$
therefore, $I_p$ and $I_m$ are defined
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
by (6)$\color{blue}{I_O} = I_1 $
$I_O$ is defined, when $I_1$ is defined
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
by (7)+(3)$I_1 - I_2 -\color{blue}{0} = 0 $
$\quad$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$$I_1 = I_2 = I_O$
$\quad$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$$\color{blue}{I_1} = \color{blue}{I_2} = \color{blue}{I_O} $
with (8) and (9): $I_\boxed{}=\frac{U_\boxed{}}{R_\boxed{}}$ and (5)
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $\frac{U_1}{R_1}= \frac{U_2}{R_2} = \frac{U_O}{R_1 + R_2}$
Voltage divider, $I=const.$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
(10)$U_2= U_O\cdot\frac{R_2}{R_1+R_2}$
Voltage divider
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$

$II.\quad$ Analysis if the Voltage Amplification

by (0) $\color{blue}{A_V}=\frac{U_O}{U_I}$
$\quad$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $A_V=\frac{U_O}{\color{blue}{U_I}}$
with (4): $U_I=U_2+U_D$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $A_V=\frac{U_O}{\color{blue}{U_2+U_D}}$
$\quad$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $A_V=\frac{U_O}{\color{blue}{U_2}+U_D}$
with (10): $U_2= U_O\cdot\frac{R_2}{R_1+R_2}$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $A_V=\frac{U_O}{\color{blue}{U_O\cdot\frac{R_2}{R_1+R_2}}+U_D}$
$\quad$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $A_V=\frac{U_O}{U_O\cdot\frac{R_2}{R_1+R_2}+U_D}$
$\quad$
$\quad\quad\quad\quad\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $A_V=\frac{U_O}{U_O\cdot\frac{R_2}{R_1+R_2}+\color{blue}{U_D}}$
with (1)
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $A_V=\frac{U_O}{U_O\cdot\frac{R_2}{R_1+R_2}+\color{blue}{\frac{U_O}{A_D}}}$
$\quad$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $A_V=\frac{U_O}{U_O\cdot\frac{R_2}{R_1+R_2}+\frac{U_O}{A_D}}$
$\quad$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $A_V=\frac{\color{blue}{U_O}}{\color{blue}{U_O}\cdot\frac{R_2}{R_1+R_2}+\frac{\color{blue}{U_O}}{A_D}}$
Expand with $\frac{1}{U_O}$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $A_V=\frac{1}{\frac{R_2}{R_1+R_2}+\frac{1}{A_D}}$
$\quad$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $A_V=\frac{1}{\frac{R_2}{R_1+R_2}+\color{blue}{\frac{1}{A_D}}}$
with $\frac{1}{A_D} \xrightarrow{A_D \rightarrow \infty} 0$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $A_V=\frac{1}{\frac{R_2}{R_1+R_2}}$
reshaping the fraction
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$
$\quad$ $A_V=\frac{R_1+R_2}{R_2}$
$\quad$
$\quad\quad\quad$$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$