Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
circuit_design:uebung_2.1.4 [2023/03/09 15:25] – mexleadmin | circuit_design:uebung_2.1.4 [2023/03/27 14:20] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 4: | Zeile 4: | ||
< | < | ||
</ | </ | ||
- | {{drawio> | + | {{drawio> |
</ | </ | ||
- | The differential resistance $r_D$ of a diode was already described in the chapter. This is necessary if a diode is to be simulated via a simplified diode model (voltage source + resistor + ideal diode, if applicable). In <imgref imageIdealizedDiode>, | + | The differential resistance $r_\rm D$ of a diode was already described in the chapter. This is necessary if a diode is to be simulated via a simplified diode model (voltage source + resistor + ideal diode, if applicable). In <imgref imageIdealizedDiode>, |
- | Calculate the differential resistance $r_D$ at forward current $I_D=15 mA$ for room temperature ($T=293~K$) and $m=1$ from Shockley' | + | Calculate the differential resistance $r_\rm D$ at forward current $I_\rm D=15 ~\rm mA$ for room temperature ($T=293~\rm K$) and $m=1$ from Shockley' |
- | To do this, first calculate the general formula for the differential resistance $r_D$. | + | To do this, first, calculate the general formula for the differential resistance $r_\rm D$. |
Steps: | Steps: | ||
- | - First, simplify Shockley' | + | - First, simplify Shockley' |
- | - Find a formula for $\frac {d I_F}{d U_F}$. | + | - Find a formula for $\frac {{\rm d} I_{\rm F}}{{\rm |
- | - Again, replace part of the result with $I_F$ and rotate the fraction to calculate the differential resistance by $r_D = \frac {d U_F}{d I_F}$. \\ As a result, you should now have $r_D = \frac {d U_F}{d I_F} = \frac {m \cdot U_T}{I_F} $ | + | - Again, replace part of the result with $I_\rm F$ and rotate the fraction to calculate the differential resistance by $r_{\rm D} = \frac {{\rm d} U_\rm F}{{\rm d} I_\rm F}$. \\ As a result, you should now have $r_{\rm D} = \frac {{\rm d} U_\rm F}{{\rm d} I_\rm F} = \frac {m \cdot U_\rm T}{I_\rm F} $ |
- | - Calculate $r_D$. | + | - Calculate $r_\rm D$. |
</ | </ |