Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
circuit_design:rechnung_umkehrintegrator [2022/01/10 00:01] tfischercircuit_design:rechnung_umkehrintegrator [2023/03/28 14:44] (aktuell) mexleadmin
Zeile 3: Zeile 3:
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = f(U_E)$  |+| $\;$ \\ $\;$ |$U_{\rm O} = f(U_{\rm I})$  |
 | $\;$ \\ $\;$ | with III.| | $\;$ \\ $\;$ | with III.|
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
Zeile 9: Zeile 9:
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A=\color{blue}{-U_D}-U_C$ +| $\;$ \\ $\;$ |$U_{\rm O}=\color{blue}{-U_{\rm D}}-U_C$ 
-| $\;$ \\ $\;$ |with II.  and I.:$ \color{blue}{U_D} = { 1 \over A_D } \cdot U_A \overset{A_D -> \infty}\longrightarrow 0$|+| $\;$ \\ $\;$ |with II.  and I.:$ \color{blue}{U_{\rm D}} = { 1 \over A_D } \cdot U_{\rm O} \overset{A_D -> \infty}\longrightarrow 0$|
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A= \quad  0 \quad -\color{blue}{U_C}$| +| $\;$ \\ $\;$ |$U_{\rm O}= \quad  0 \quad -\color{blue}{U_C}$| 
-| $\;$ \\ $\;$ |with V.: $\color{blue}{U_C}={ 1 \over C }\cdot(\int_{t_0}^{t_1} I_C \ dt+ Q_0(t_0))$|+| $\;$ \\ $\;$ |with V.: $\color{blue}{U_C}={ 1 \over C }\cdot(\int_{t_0}^{t_1} I_C \ {\rm d} t+ Q_0(t_0))$|
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = {-{ 1 \over C }\cdot}(\int_{t_0}^{t_1} \color{blue}{I_C} \ dt+ Q_0(t_0)) $|+| $\;$ \\ $\;$ |$U_{\rm O} = {-{ 1 \over C }\cdot}(\int_{t_0}^{t_1} \color{blue}{I_C} \ {\rm d} t+ Q_0(t_0)) $|
 | $\;$ \\ $\;$ |with IV.: $\color{blue}{I_C}=I_R$| | $\;$ \\ $\;$ |with IV.: $\color{blue}{I_C}=I_R$|
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
Zeile 27: Zeile 27:
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = \color{blue}{-{ 1 \over C }\cdot(}\int_{t_0}^{t_1} I_R \ dt+ Q_0(t_0)\color{blue}{)} $|+| $\;$ \\ $\;$ |$U_{\rm O} = \color{blue}{-{ 1 \over C }\cdot(}\int_{t_0}^{t_1} I_R \ {\rm d} t+ Q_0(t_0)\color{blue}{)} $|
 | $\;$ \\ $\;$ |Factor out|  | $\;$ \\ $\;$ |Factor out| 
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
Zeile 33: Zeile 33:
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} I_R \ dt - \color{blue}{ Q_0(t_0) \over C } $| +| $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over C }\cdot\int_{t_0}^{t_1} I_R \ {\rm d} t - \color{blue}{ Q_0(t_0) \over C } $| 
-| $\;$ \\ $\;$ |consider the integration constant: $\color{blue}{ Q_0(t_0) \over C }= U_C(t_0) = -U_{A0}$|+| $\;$ \\ $\;$ |integration constant: $\color{blue}{ Q_0(t_0) \over C }= U_C(t_0) = -U_{\rm O0}$|
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{I_R} \ dt + U_{A0}$| +| $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{I_R} \ {\rm d} t + U_{\rm O0}$| 
-| $\;$ \\ $\;$ |with VI. and II.: $\color{blue}{I_R}={ U_R \over R}={ U_E \over R} $|+| $\;$ \\ $\;$ |with VI. and II.: $\color{blue}{I_R}={ U_R \over R}={ U_{\rm I} \over R} $|
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{1 \over R} \cdot U_E dt + U_{A0}$|+| $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{1 \over R} \cdot U_{\rm I} \ {\rm d} t + U_{\rm O0}$|
 | $\;$ \\ $\;$ |move constant ahead|  | $\;$ \\ $\;$ |move constant ahead| 
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
Zeile 51: Zeile 51:
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} U_E dt + U_{A0}$|+| $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} U_{\rm I} \ {\rm d} t + U_{\rm O0}$|
 | $\;$ \\ $\;$ | insert time constant  $\tau = R \cdot C$ |  | $\;$ \\ $\;$ | insert time constant  $\tau = R \cdot C$ | 
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
Zeile 57: Zeile 57:
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = -{ 1 \over {\tau} }\cdot\int_{t_0}^{t_1} U_E dt + U_{A0}$| +| $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over {\tau} }\cdot\int_{t_0}^{t_1} U_{\rm I} \ {\rm d} t + U_{\rm O0}$| 
 | $\;$ \\ $\;$ | | | $\;$ \\ $\;$ | |
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|