Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
circuit_design:rechnung_umkehrintegrator [2021/09/21 04:56] – Externe Bearbeitung 127.0.0.1 | circuit_design:rechnung_umkehrintegrator [2023/03/28 14:44] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | ~~REVEAL | + | ~~REVEAL~~ |
----> | ----> | ||
- | |$U_A = f(U_E)$ | + | | $\;$ \\ $\;$ |$U_{\rm O} = f(U_{\rm I})$ | |
- | |$\qquad\qquad\qquad\qquad\qquad\quad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad$| | + | | $\;$ \\ $\;$ | with III.| |
+ | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | |$U_A=\color{blue}{-U_D}-U_C$ | + | | $\;$ \\ $\;$ |$U_{\rm O}=\color{blue}{-U_{\rm D}}-U_C$ |
- | |$\qquad\qquad\qquad\qquad\qquad\quad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad$| | + | | $\;$ \\ $\;$ |with II. |
+ | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | |$U_A= \quad 0 \quad -\color{blue}{U_C}$|mit V.|$\color{blue}{U_C}={ 1 \over C }\cdot(\int_{t_0}^{t_1} I_C \ dt+ Q_0(t_0))$| | + | | $\;$ \\ $\;$ |$U_{\rm O}= \quad 0 \quad -\color{blue}{U_C}$| |
- | |$\qquad\qquad\qquad\qquad\qquad\quad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad$| | + | | $\;$ \\ $\;$ |with V.: $\color{blue}{U_C}={ 1 \over C }\cdot(\int_{t_0}^{t_1} I_C \ {\rm d} t+ Q_0(t_0))$| |
+ | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | |$U_A = {-{ 1 \over C }\cdot}(\int_{t_0}^{t_1} \color{blue}{I_C} \ dt+ Q_0(t_0)) $|mit IV.|$\color{blue}{I_C}=I_R$| | + | | $\;$ \\ $\;$ |$U_{\rm O} = {-{ 1 \over C }\cdot}(\int_{t_0}^{t_1} \color{blue}{I_C} \ {\rm d} t+ Q_0(t_0)) $| |
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | | $\;$ \\ $\;$ |with IV.: $\color{blue}{I_C}=I_R$| |
+ | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | |$U_A = \color{blue}{-{ 1 \over C }\cdot(}\int_{t_0}^{t_1} I_R \ dt+ Q_0(t_0)\color{blue}{)} $|Ausklammern| | + | | $\;$ \\ $\;$ |$U_{\rm O} = \color{blue}{-{ 1 \over C }\cdot(}\int_{t_0}^{t_1} I_R \ {\rm d} t+ Q_0(t_0)\color{blue}{)} $| |
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | | $\;$ \\ $\;$ |Factor out| |
+ | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | |$U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} I_R \ dt - \color{blue}{ Q_0(t_0) \over C } $|Integrationskonstante | + | | $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over C }\cdot\int_{t_0}^{t_1} I_R \ {\rm d} t - \color{blue}{ Q_0(t_0) \over C } $| |
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | | $\;$ \\ $\;$ |integration constant: |
+ | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | |$U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{I_R} \ dt + U_{A0}$|mit VI. und II.|$\color{blue}{I_R}={ U_R \over R}={ U_E \over R} $| | + | | $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{I_R} \ {\rm d} t + U_{\rm O0}$| |
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | | $\;$ \\ $\;$ |with VI. and II.: $\color{blue}{I_R}={ U_R \over R}={ U_{\rm I} \over R} $| |
+ | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | |$U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{1 \over R} \cdot U_E \ dt + U_{A0}$|Konstante vorziehen| | + | | $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{1 \over R} \cdot U_{\rm I} \ {\rm d} t + U_{\rm O0}$| |
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | | $\;$ \\ $\;$ |move constant ahead| |
+ | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | |$U_A = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} | + | | $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} |
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | | $\;$ \\ $\;$ | insert time constant |
+ | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | |$U_A = -{ 1 \over {\tau} }\cdot\int_{t_0}^{t_1} | + | | $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over {\tau} }\cdot\int_{t_0}^{t_1} |
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | | $\;$ \\ $\;$ | | |
+ | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||