Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
circuit_design:rechnung_betragundphase_umkehrintegrator [2022/01/10 00:18] – tfischer | circuit_design:rechnung_betragundphase_umkehrintegrator [2023/03/28 14:52] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 2: | Zeile 2: | ||
----> | ----> | ||
- | | $\;$ \\ $\;$ |$U_A = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} \color{blue}{U_E(t)} \ dt + U_{A0}$| | + | | $\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} \color{blue}{U_{\rm I}(t)} \ {\rm d}t + U_{\rm O0}$| |
- | | $\;$ \\ $\;$ | insert sine function: $ \color{blue}{U_E(t)}= \hat{U}_E \cdot sin(\omega \cdot t)$| | + | | $\;$ \\ $\;$ \\ $\;$ | insert sine function: |
| |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | | $\;$ \\ $\;$ |$U_A = -{ 1 \over {R\cdot C} }\cdot\color{blue}{\int_{t_0}^{t_1} \hat{U}_E \cdot sin(\omega \cdot t) \ dt} + U_{A0}$| | + | | $\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over {R\cdot C} }\cdot\color{blue}{\int_{t_0}^{t_1} \hat{U}_{\rm I} \cdot \sin(\omega \cdot t) \ {\rm d}t} + U_{\rm O0}$| |
- | | $\;$ \\ $\;$ |insert root function with limits $\color{blue}{\int_{x_0}^{x_1} sin(a \cdot x) \ dx} = [- {1 \over a} \cdot cos(a \cdot x) ]_{x_0}^{x_1}$| | + | | $\;$ \\ $\;$ \\ $\;$ |insert root function with limits |
| |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | | $\;$ \\ $\;$ |$U_A = -{ 1 \over {R\cdot C} }\cdot [- \color{blue}{\hat{U}_E \over \omega} \cdot cos(\omega \cdot t) ]_{t_0}^{t_1} + U_{A0}$ | | + | | $\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over {R\cdot C} }\cdot [- \color{blue}{\hat{U}_{\rm I} \over \omega} \cdot \cos(\omega \cdot t) ]_{t_0}^{t_1} + U_{\rm O0}$ | |
- | | $\;$ \\ $\;$ | put constant before | + | | $\;$ \\ $\;$ \\ $\;$ | put constant before integral| |
| |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | | $\;$ \\ $\;$ |$U_A = { 1 \over {R\cdot C} }\cdot {\hat{U}_E \over \omega} \cdot \color{blue}{[ cos(\omega \cdot t) ]_{t_0}^{t_1}} + U_{A0}$| | + | | $\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = { 1 \over {R\cdot C} }\cdot {\hat{U}_{\rm I} \over \omega} \cdot \color{blue}{[ |
- | | $\;$ \\ $\;$ |insert limits: $t_0=0$, $t_1=t$| | + | | $\;$ \\ $\;$ \\ $\;$ |insert limits: $t_0=0$, $t_1=t$| |
| |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | | $\;$ \\ $\;$ |$U_A = {{{\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot (} cos(\omega \cdot t) - \color{blue}{cos(0)} ) + U_{A0}$| | + | | $\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = {{{\hat{U}_{\rm I} } \over {\omega \cdot R\cdot C} } \cdot (} \cos(\omega \cdot t) - \color{blue}{\cos(0)} ) + U_{\rm O0}$| |
- | | $\;$ \\ $\;$ | $\color{blue}{cos(0)}=1$| | + | | $\;$ \\ $\;$ \\ $\;$ | $\color{blue}{\cos(0)}=1$| |
| |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | | $\;$ \\ $\;$ |$U_A = \color{blue}{{{ \hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot (} cos(\omega \cdot t) - 1 \color{blue}{)} + U_{A0}$ | | + | | $\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = \color{blue}{{{ \hat{U}_{\rm I} } \over {\omega \cdot R\cdot C} } \cdot (} \cos(\omega \cdot t) - 1 \color{blue}{)} + U_{\rm O0}$ | |
- | | $\;$ \\ $\;$ |multiply| | + | | $\;$ \\ $\;$ \\ $\;$ |multiply| |
| |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | | $\;$ \\ $\;$ |$U_A = { {\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_E } \over {\omega \cdot R\cdot C}} + U_{A0}}$ | | + | | $\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = { {\hat{U}_{\rm I} } \over {\omega \cdot R\cdot C} } \cdot \cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_{\rm I} } \over {\omega \cdot R\cdot C}} + U_{\rm O0}}$ | |
- | | $\;$ \\ $\;$ |consider the non-cosine terms | | + | | $\;$ \\ $\;$ \\ $\;$ |consider the non-cosine terms: \\ The blue part is independent in time. \\ We assume purely sinusoidal quantities! |
| |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | | $\;$ \\ $\;$ |$U_A = { {\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_E } \over {\omega \cdot R\cdot C}} + U_{A0}}$ | | + | | $\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = { {\hat{U}_{\rm I} } \over {\omega \cdot R\cdot C} } \cdot \cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_{\rm I} } \over {\omega \cdot R\cdot C}} + U_{\rm O0}}$ | |
- | | $\;$ \\ $\;$ | This part is independent in time. Since we assume purely sinusoidal quantities, | + | | $\;$ \\ $\;$ \\ $\;$ | $\rightarrow$ |
| |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | | $\;$ \\ $\;$ |$U_A = { {\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t)$| | + | | $\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = { {\hat{U}_{\rm I} } \over {\omega \cdot R\cdot C} } \cdot \cos(\omega \cdot t)$| |
- | | $\;$ \\ $\;$ | | | + | | $\;$ \\ $\;$ \\ $\;$ | | |
| |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | ||
<---- | <---- |