Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
circuit_design:rechnung_betragundphase_umkehrintegrator [2022/01/10 00:18] tfischercircuit_design:rechnung_betragundphase_umkehrintegrator [2023/03/28 14:52] (aktuell) mexleadmin
Zeile 2: Zeile 2:
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} \color{blue}{U_E(t)} \ dt + U_{A0}$| +$\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} \color{blue}{U_{\rm I}(t)} \ {\rm d}t + U_{\rm O0}$| 
-| $\;$ \\ $\;$ | insert sine function: $ \color{blue}{U_E(t)}= \hat{U}_E \cdot sin(\omega \cdot t)$|+$\;$ \\ $\;$ \\ $\;$ | insert sine function: \\ $ \color{blue}{U_{\rm I}(t)}= \hat{U}_{\rm I} \cdot \sin(\omega \cdot t)$|
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = -{ 1 \over {R\cdot C} }\cdot\color{blue}{\int_{t_0}^{t_1} \hat{U}_E \cdot sin(\omega \cdot t) \ dt} + U_{A0}$| +$\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over {R\cdot C} }\cdot\color{blue}{\int_{t_0}^{t_1} \hat{U}_{\rm I} \cdot \sin(\omega \cdot t) \ {\rm d}t} + U_{\rm O0}$| 
-| $\;$ \\ $\;$ |insert root function with limits $\color{blue}{\int_{x_0}^{x_1} sin(a \cdot x) \ dx} = [- {1 \over a} \cdot cos(a \cdot x) ]_{x_0}^{x_1}$|+$\;$ \\ $\;$ \\ $\;$ |insert root function with limits \\  $\color{blue}{\int_{x_0}^{x_1} \sin(a \cdot x) \ {\rm d}x} = [- {1 \over a} \cdot \cos(a \cdot x) ]_{x_0}^{x_1}$|
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = -{ 1 \over {R\cdot C} }\cdot [- \color{blue}{\hat{U}_E \over \omega} \cdot cos(\omega \cdot t) ]_{t_0}^{t_1} + U_{A0}$ | +$\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = -{ 1 \over {R\cdot C} }\cdot [- \color{blue}{\hat{U}_{\rm I} \over \omega} \cdot \cos(\omega \cdot t) ]_{t_0}^{t_1} + U_{\rm O0}$ | 
-| $\;$ \\ $\;$ | put constant before \\ integral|+$\;$ \\ $\;$ \\ $\;$ | put constant before integral|
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = { 1 \over {R\cdot C} }\cdot {\hat{U}_E \over \omega} \cdot \color{blue}{[ cos(\omega \cdot t) ]_{t_0}^{t_1}} + U_{A0}$| +$\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = { 1 \over {R\cdot C} }\cdot {\hat{U}_{\rm I} \over \omega} \cdot \color{blue}{[ \cos(\omega \cdot t) ]_{t_0}^{t_1}} + U_{\rm O0}$| 
-| $\;$ \\ $\;$ |insert limits: $t_0=0$, $t_1=t$|+$\;$ \\ $\;$ \\ $\;$ |insert limits: $t_0=0$, $t_1=t$|
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = {{{\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot (} cos(\omega \cdot t) - \color{blue}{cos(0)} ) + U_{A0}$| +$\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = {{{\hat{U}_{\rm I} } \over {\omega \cdot R\cdot C} } \cdot (} \cos(\omega \cdot t) - \color{blue}{\cos(0)} ) + U_{\rm O0}$| 
-| $\;$ \\ $\;$ | $\color{blue}{cos(0)}=1$|+$\;$ \\ $\;$ \\ $\;$ | $\color{blue}{\cos(0)}=1$|
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = \color{blue}{{{ \hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot (} cos(\omega \cdot t) - 1 \color{blue}{)} + U_{A0}$ | +$\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = \color{blue}{{{ \hat{U}_{\rm I} } \over {\omega \cdot R\cdot C} } \cdot (} \cos(\omega \cdot t) - 1 \color{blue}{)} + U_{\rm O0}$ | 
-| $\;$ \\ $\;$ |multiply|+$\;$ \\ $\;$ \\ $\;$ |multiply|
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = { {\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_E } \over {\omega \cdot R\cdot C}} + U_{A0}}$ | +$\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = { {\hat{U}_{\rm I} } \over {\omega \cdot R\cdot C} } \cdot \cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_{\rm I} } \over {\omega \cdot R\cdot C}} + U_{\rm O0}}$ | 
-| $\;$ \\ $\;$ |consider the \\ non-cosine terms |+$\;$ \\ $\;$ \\ $\;$ |consider the non-cosine terms: \\ The blue part is independent in time. \\ We assume purely sinusoidal quantities! |
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = { {\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_E } \over {\omega \cdot R\cdot C}} + U_{A0}}$ | +$\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = { {\hat{U}_{\rm I} } \over {\omega \cdot R\cdot C} } \cdot \cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_{\rm I} } \over {\omega \cdot R\cdot C}} + U_{\rm O0}}$ | 
-| $\;$ \\ $\;$ | This part is independent in time. Since we assume purely sinusoidal quantities, \\ the initial voltage of the capacitor must be: $U_{C0} = U_{A0}={{\hat{U}_E} \over {\omega \cdot R\cdot C}}$||+| $\;$ \\ $\;$ \\ $\;$ | $\rightarrow$ initial voltage of the capacitor: \\ $U_{C0} = U_{\rm O0}={{\hat{U}_{\rm I}} \over {\omega \cdot R\cdot C}}$||
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-| $\;$ \\ $\;$ |$U_A = { {\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t)$|  +$\;$ \\ $\;$ \\ $\;$ |$U_{\rm O} = { {\hat{U}_{\rm I} } \over {\omega \cdot R\cdot C} } \cdot \cos(\omega \cdot t)$|  
-| $\;$ \\ $\;$ | |+$\;$ \\ $\;$ \\ $\;$ | |
 | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----